

WORKSHOP WITH ARPA TUSCANY (ARPAT) Tuesday, 4th August 2015

The use of **pesticides** in agriculture has an impact on the quality of the **environment** and on **food safety**.

Surface water and **groundwater** are more sensitive to pollution.

of water resources for verifying the achievement of environmental quality objectives established by European standards and in providing technical and scientific support to the Regions in the policies of water protection.

Tuesday, 4th August 2015

European Union has recently promulgated the **Directive 2009/128/EC**

a framework for member states for policies and actions designed to "sustainable use of pesticides"

The main activities include

- > promotion of organic farming,
- ➤ obligation of the adoption of the principles of integrated planthealth control (low pesticide-input)
- > training and certification of sector's operators (vendors, users, consultants)
- > information to the public about the risks of pesticide use
- > proper maintenance and calibration of distribution equipment,
- > prohibition on spraying by aircraft
- protection of the aquatic environment.

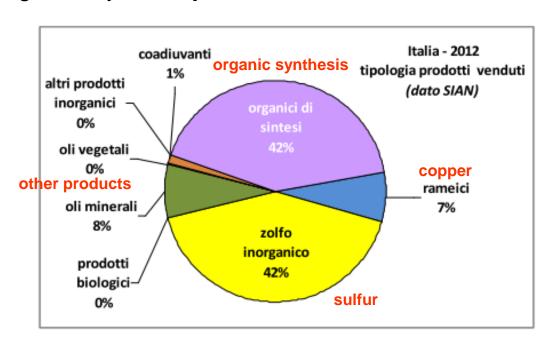
Regione Toscana Diritti Valori Innovazione Sostenibilità

WORKSHOP WITH ARPA TUSCANY (ARPAT)

Tuesday, 4th August 2015

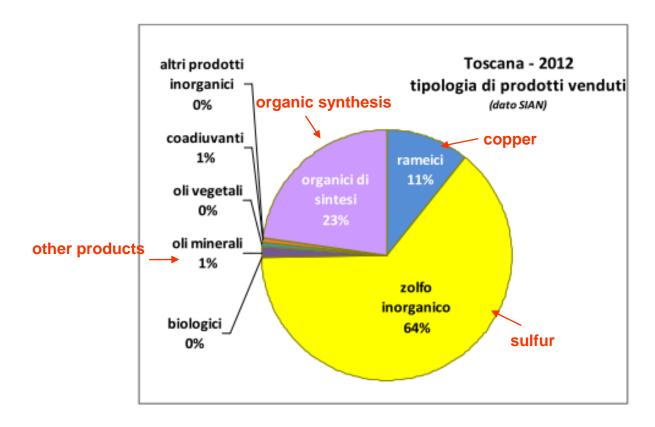
The **protection of the aquatic environment** from pollution by pesticides is carried out through various instruments

- > reduction / elimination / substitution of pesticides classified as dangerous for the aquatic environment,
- > use of low-dispersion distribution techniques to decrease the amount pesticide,
- > specific mitigation measures to be taken in the field to reduce the phenomena of run-off or drainage or transport to surface water bodies,
- > creation of respect areas for waters used for drinking purposes where prohibited / regulated the use of pesticides,
- reduction / elimination of the treatments on impermeable surface (public health use).


Tuesday, 4th August 2015

In Italy each year are currently sold around **60,000 tons of pesticides** (approximately **6 kg per hectare of agricultural area**)

- > proximately 50% of the products used is represented by compounds based on copper and sulfur (products compatible with organic farming),
- > slightly more than 40% is represented by products of organic synthesis,
- > the remaining 10% by other products.


在水中农药监测

Tuesday, 4th August 2015

In Tuscany **75%** of the products used is based on inorganic **sulfur** and **copper** which find wide application particularly in the cultivation of the grape growing..

Tuesday, 4th August 2015

Synthetic organic compounds refer to more than 400 different active substances on the market in Italy in recent years

about **10** substances represent **50%** of the total quantity sold and about **100** represent **90%**.

Some of the substances in this category may **represent a risk to the environment**, especially for their possible **impact on water resources**, as shown by the results of water monitoring in recent years.

dati di vendita elaborati dal gruppo AAAF TOSCANA 2012	
Sostanza attiva	Kg
ZOLFO	1277454
RAME (composti del)	213900
GLIFOSATE	104016
FOSETIL ALLUMINIO	102749
MANCOZEB	53261
OLIO DI PARAFFINA	28081
DAZOMET	15105
METIRAM	11680
FOLPET	9970
SPIROXAMINA	9848
DIMETOMORF	9270
OLIO DI COLZA	8724
CIMOXANIL	8078
PENDIMETALIN	7358
DIMETOATO	6118
CLORPIRIFOS	5800
S-METOLACLOR	5738
PROCLORAZ	5179
MCPA	4644
3,6-DIOXAEICOSILSOLFATO	4578
N-DECANOLO (1-DECANOLO)	3923
ZIRAM	3785
DITIANON	3727
IPROVALICARB	3702
METAM-SODIUM (usi essenziali fino al 31/12/2014)	3695
TEBUCONAZOLO	3450
SPINOSAD	3346
FENAMIDONE	3250

Tuesday, 4th August 2015

The organic products of synthesis **most sold** in Italy and in Tuscany

is the herbicide glyphosate

that recently the IARC (International Agency for Research on Cancer) has classified as probable carcinogen (class 2A).

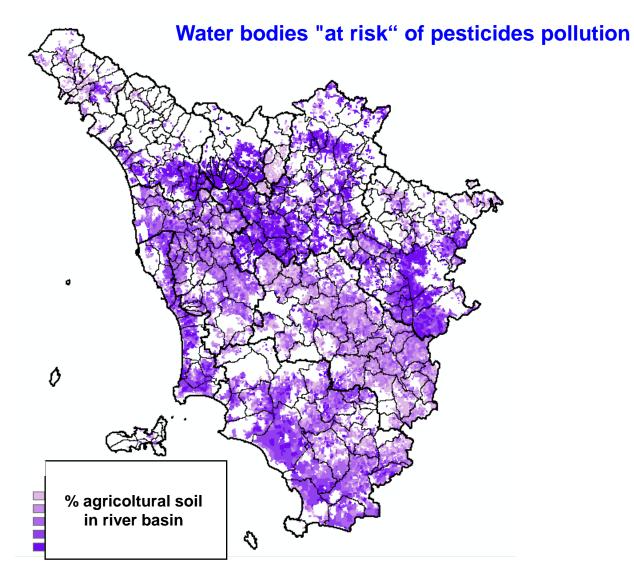
Tuesday, 4th August 2015

在水中农药监测

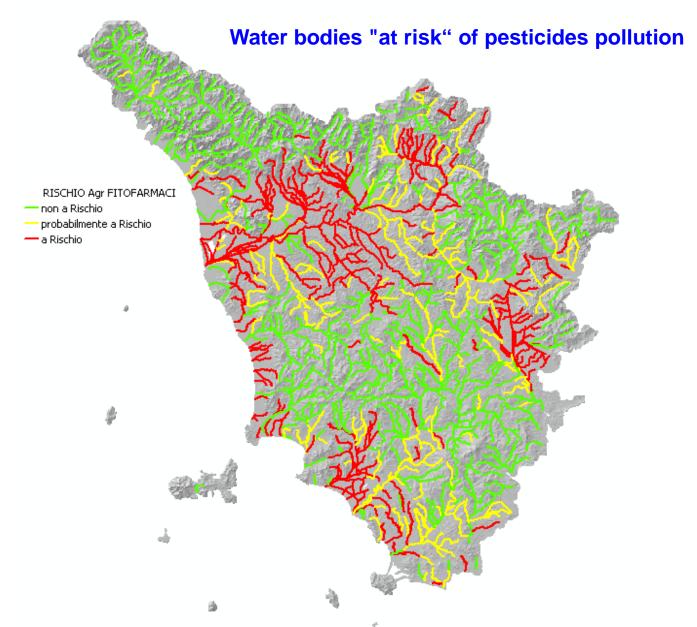
To carry out **adequate monitoring** of residues of pesticides in **water** is required

- ➤ a **laboratory** equipped with high performance instruments and qualified operators,
- ➤ a careful design to identify both water bodies "at risk" of pollution
- ➤ a list of "priority" pesticides to be investigate in the waters,
- ➤ a system of data storage, processing and circulation to represent
 - ✓ state of water quality,
 - ✓ **degree of achievement** of the **objectives** set by the European Union (ecological and chemical status "good" at 2018),
 - ✓ trend over time.

Tuesday, 4th August 2015


Water bodies "at risk" of pesticides pollution

200 stations to monitor pesticides
(of about 650 monitoring stations present in Tuscany)
2/3 of these monitoring stations are water bodies for use for drinking water.


carried out
through an analysis of pressures
using as pressure indicator the "agricultural use of the soil"

This analysis is used to select the water bodies "at risk of pesticide pollution", those with higher extension of agricultural areas in their own recharge reservoir.

Tuesday, 4th August 2015

A list of "priority" pesticides

Answer to:
which pesticides to search in the waters for a
appropriate monitoring profile?

selecting on provisional mode

from

most used pesticides in the area
(data available through the sales data)
and

physical-chemical and environmental properties

indicating a risk for the matrix water (i.e. high solubility, persistence, mobility, ability to bio-accumulate).

Tuesday, 4th August 2015

A list of "priority" pesticides

Water Priority Index (GuideLine AAAF, 2011)

based on

- ✓ Water solubility
- √ Molecular weight
- √ Vapour pressure
- √ Kow
- √Koc
- ✓ Degradation time in soil (DT50 soil)

WPI values from 0,4 (low risk) to 6 (high risk)

	PRIORITY LIST PESTICIDES TO SEARCH IN WATER (TUSCANY - 2013-2015)						
1	ACETOCLOR	22	CLORTOLURON	43	IPROVALICARB	64	PENCONAZOLO
2	ALACLOR	23	D, 2,4-	44	ISOPROTURON	65	PENDIMETALIN
3	AMPA	24	DB, 2,4-	45	KRESOXIM-METHYL	66	PIRACLOSTROBINA
4	ATRAZINA	25	DICAMBA	46	LENACIL	67	PIRIMETANIL
5	ATRAZINA, DESETIL	26	DIMETENAMID	47	LINURON	68	PROCIMIDONE
6	ATRAZINA, DESISOPROPIL	27	DIMETOATO	48	MALATION	69	PROPAMOCARB
7	AZIMSULFURON	28	DIMETOMORF	49	MANDIPROPAMID	70	PROPICONAZOLO
8	AZOSSISTROBINA	29	DIURON	50	МСРА	71	PROPIZAMIDE
9	BENALAXIL	30	ENDOSULFAN	51	MECOPROP	72	QUIZALOFOP-ETILE-D
10	BENTAZONE	31	ENDOSULFAN, SOLFATO	52	MEPANIPYRIM	73	RIMSULFURON
11	BOSCALID	32	ETOFUMESATE	53	MESOSULFURON-METILE	74	SIMAZINA
12	CARBENDAZIM	33	FENHEXAMID	54	METALAXIL, METALAXIL,M-	75	SPIROXAMINA
13	CIMOXANIL	34	FENPROPIDIN	55	METAMIDOFOS	76	TEBUCONAZOLO
14	CIPROCONAZOLO	35	FLUFENACET	56	METAMITRON	77	TERBUTILAZINA
15	CIPRODINIL	36	FLUOPICOLIDE	57	METAZACLOR	78	TERBUTILAZINA, DESETIL
16	CLOPIRALID	37	FLUROXIPIR	58	METOLACLOR, METOLACLOR,S-	79	TOLCLOFOS-METILE
17	CLOPIRALID	38	GLIFOSATE	59	METRIBUZIN	80	TRALCOXIDIM
18	CLORIDAZON	39	GLUFOSINATE	60	NICOSULFURON	81	TRIASULFURON
19	CLORPIRIFOS	40	IMIDACLOPRID	61	OXADIAZON	82	TRIFLURALIN
20	CLORPIRIFOSMETILE	41	IODOSULFURON-METIL-SODIO	62	OXADIXIL		
21	CLORSULFURON	42	IPRODIONE	63	OXIFLUORFEN		

Tuesday, 4th August 2015

ARPAT

performs annually in the water monitoring of pesticides in Tuscany over 1000 water samples

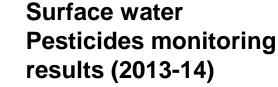
corresponding **200 monitoring stations** of surface waters and groundwater

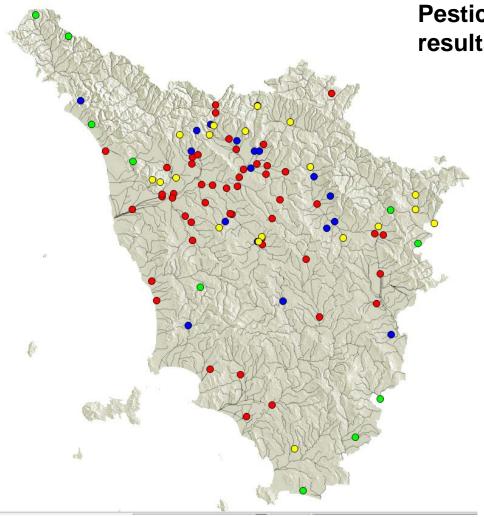
On each sample is performed a "multi-residue analysis" able to quantify over 80 different active substances,

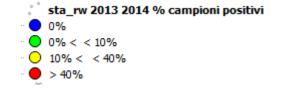
for a total of approximately **80,000 determinations**

Tuesday, 4th August 2015

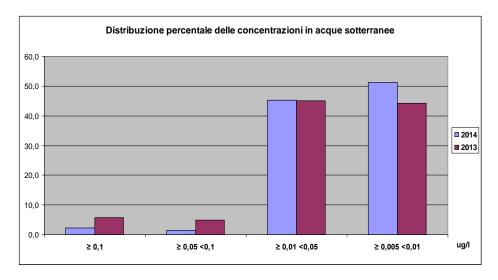
Monitoring results

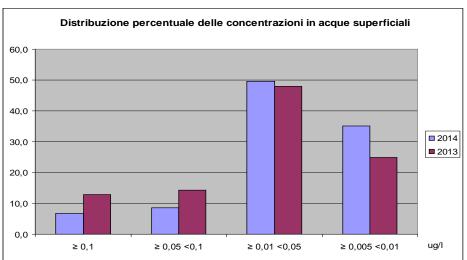

In **Tuscany** (in line with the rest of Italy)


the **monitoring results** indicate a **widespread presence of pesticide residues in water**,


more pronounced in **surface water**(about 50% of the samples presents detectable residues)
that in **groundwater**(about 25% of the samples presents detectable residues).

Tuesday, 4th August 2015

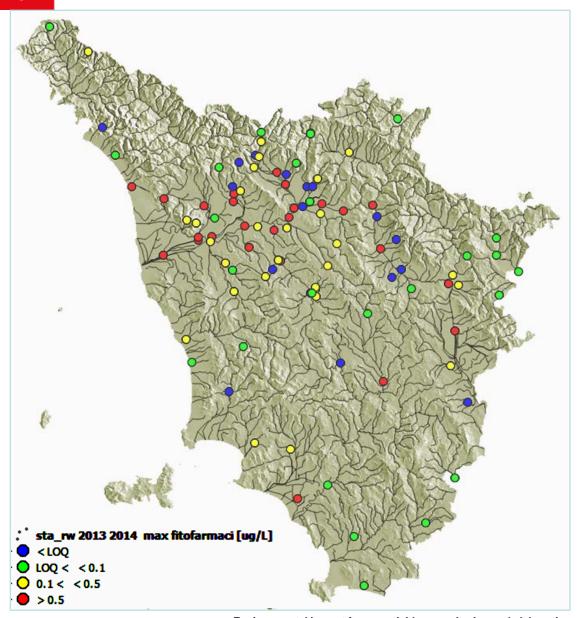



% samples with detectable residues

Tuesday, 4th August 2015

The concentrations are however on average low

only 10% of surface water samples and 5% of groundwater samples have concentrations of pesticides ≥ 0.1 µg / litro (legal limit for drinking water)


groundwater

percentage distribution of resideues concentration

surface water

Tuesday, 4th August 2015

Surface water Pesticides monitoring results (2013-14)

Maximum residues level

Tuesday, 4th August 2015

Principal pesticide residues in surface water (Tuscany- 2014)

	ELENCO DELLE SOSTANZE ATTIVE CON CONCENTRAZIONI MASSIME RILEVATE ≥ 0,1 μg/l									
	ACQUE SUPERFICIALI INTERNE	campioni positivi	Valore minimo	Valore massimo	Valore medio	Valore mediano				
		n	μg/L	μg/L	μg/L	µg/L				
1	AZOSSISTROBINA	23	0,005	0,254	0,030	0,009				
2	BOSCALID	17	0,005	0,112	0,018	0,009				
3	CARBENDAZIM	81	0,005	0,284	0,033	0,012				
4	CLORTOLURON	34	0,005	0,561	0,057	0,014				
5	DIMETOATO	33	0,005	0,527	0,042	0,022				
6	DIMETOMORF	123	0,005	0,522	0,045	0,021				
7	FENHEXAMID	8	0,007	0,273	0,071	0,020				
8	FLUOPICOLIDE	111	0,005	0,235	0,028	0,016				
9	GLIFOSATE	51	0,005	2,108	0,175	0,057				
10	GLUFOSINATE-AMMONIO	3	0,012	0,237	0,088	0,015				
11	IMIDACLOPRID	122	0,001	0,343	0,038	0,014				
12	KRESOXIM-METIL	58	0,005	0,365	0,038	0,021				
13	MANDIPROPAMIDE	13	0,006	0,482	0,073	0,032				
14	METALAXIL-M	92	0,005	0,154	0,030	0,018				
15	METOLACLOR-S	69	0,005	0,626	0,038	0,013				
16	NICOSULFURON	16	0,006	0,221	0,043	0,010				
17	OXADIAZON	35	0,006	0,173	0,044	0,020				
18	PROPAMOCARB	21	0,007	0,863	0,086	0,020				
19	TEBUCONAZOLO	96	0,005	0,101	0,022	0,015				
20	TERBUTILAZINA	71	0,005	0,249	0,032	0,014				

Tuesday, 4th August 2015

pesticide residues in groundwater (Tuscany- 2014)

ACQUE SOTTERRANEE	campioni positivi	Valore minimo	Valore massimo	Valore medio	Valore mediano
ACOUL SOTTEMANEE	n	μg/L	µg/L	μg/L	µg/L
1 ATRAZINA, DESETIL-	19	0.005	0.040	0.011	0.008
2 IMIDACLOPRID	11	0.006	0.038	0.017	0.014
3 CARBENDAZIM	8	0.005	0,284	0,048	0,014
4 PENDIMETALIN	8	0.006	0.027	0,013	0.010
5 OXADIAZON	7	0.005	0.016	0,009	0.007
6 PIRACLOSTROBINA	7	0,005	0,015	0,011	0,012
7 GLIFOSATE	6	0.004	0,022	0.012	0.012
8 TERBUTILAZINA, DESETIL-	6	0.005	0,007	0.006	0.006
9 ATRAZINA, DEISOPROPIL-	5	0,006	0,015	0,011	0,010
10 BOSCALID	4	0,005	0,025	0,011	0,007
11 KRESOXIM-METIL	4	0,010	0,131	0,056	0,042
12 OXADIXIL	4	0,006	0,025	0,013	0,010
13 OXYFLUORFEN	4	0,006	0,025	0,013	0,011
14 PROPAMOCARB	4	0,005	0,009	0,007	0,007
15 TRALCOXYDIM	4	0,012	0,017	0,014	0,013
16 ATRAZINA	3	0,005	0,012	0,008	0,007
17 CLORTOLURON	3	0,007	0,022	0,015	0,017
18 DIURON	3	0,006	0,044	0,021	0,014
19 FLUOPICOLIDE	3	0,005	0,021	0,010	0,005
20 SIMAZINA	3	0,008	0,020	0,012	0,008
21 CIPRODINIL	2	0,006	0,007	0,007	0,007
22 MEPANIPYRIM	2	0,005	0,006	0,006	0,006
23 METOLACLOR-S	2	0,029	0,122	0,076	0,076
24 TEBUCONAZOLO	2	0,009	0,021	0,015	0,015
25 TERBUTILAZINA	2	0,005	0,050	0,028	0,028
26 AMPA	1	0,007	0,007	0,007	0,007
27 DIMETOATO	1	0,006	0,006	0,006	0,006
28 GLUFOSINATE-AMMONIO	1	0,015	0,015	0,015	0,015
29 LENACIL	1	0,006	0,006	0,006	0,006
30 LINURON	1	0,009	0,009	0,009	0,009
31 METAZACLOR	1	0,027	0,027	0,027	0,027
32 NICOSULFURON	1	0,017	0,017	0,017	0,017
33 PENCONAZOLO	1	0,005	0,005	0,005	0,005
34 SPIROXAMINA	1	0,006	0,006	0,006	0,006

Tuesday, 4th August 2015

In Tuscany the water state is not alarming for pesticides

but

there are however **some very critical situations** some superficial water reservoirs used for the production of **drinking water**.

National legislation provides around those points a buffer zone large 200 m where it is forbidden to use of pesticides (that unfortunately it is not always respected)

POT-019	BACI	BACINO FALCHERETO					
PT		QUARRATA					
SOSTANZA ATTIVA	VALORE MAX (µg/l)						
303TANZA ATTIVA	2012	2013	2014				
atrazina, deisopropil		0,007					
boscalid		0,005					
carbendazim		0,086	0,006				
clortoluron		0,06					
dimetoato		0,066	0,108				
dimetomorf		0,322	0,076				
fenhexamid		0,009	0,273				
fluopicolide		0,055	0,048				
glifosate			0,226				
imidacloprid		0,14					
iprovalicarb	0,026	0,007	0,008				
lenacil			0,019				
mcpa		0,008					
metalaxil		0,172					
metalaxil-m		1,22	0,065				
metolaclor-s			0,011				
nicosulfuron			0,01				
oxadixil		0,015					
oxyfluorfen		0,007					
pendimetalin		0,013					
simazina		0,006					
tebuconazolo		5,59	0,073				
terbutilazina		0,108					
terbutilazina, desetil		0,006					

Tuesday, 4th August 2015

In last period ARPAT
is collaborating with the Region of Tuscany
to a regulation of the protection areas of surface and groundwater
used for drinking water production,
by adopting "plans for the use of pesticides" that provide or
prohibition or use restrictions for substances with high water
pollution potential, favoring the use of substances with a lower impact.

This can be done using an **indicator proposed by ARPAT** able to represent a **"specific gravity environment" of each pesticide** calculated through the combination of **physicochemical** and **partitive properties** (solubility, degradation time, Kow octanol-water coefficient Koc adsorption of carbon-water) and some **eco-toxicological properties** (toxicity to animals and plants sensitive).

Tuesday, 4th August 2015

Pressure indicator is calculated combining

	Environmental, eco-	Potential impact threshold				
Indicator	tossicological, tossicological	1	2	3		
	property	Low	Medium	high		
Water solubility 20°C (mg/l)	Affinity for water	≤ 50	50-500	> 500		
Koc (ml/g)	Mobility	> 500	75-500	≤ 75		
DT50 soil (days)	Persistence in soil	≤ 30	30-100	>100		
DT50 water - hydrolisis pH7 (days)	Persistence in water	≤ 30	30-100	>100		
DT50 sed. (days)	Persistence in sediment	≤ 30	30-100	>100		
GUS	Potenzial of leaching	< 1,8	1,8-2,8	> 2,8		
log Kow	affinità al bioaccumulo	≤ 2,7	2,7-3	> 3		
LD50 oral acute (mg/kg BW/day)	Mammalians toxicity	>2000	100-2000	<100		
LD50 acute (mg/kg)	Birds toxicity	>2000	100-2000	<100		
LC50 acute (96h-mg/l)	Fishes toxicity	>100	0,1-100	<0,1		
EC50 acute (48h mg/l)	Aquatic Inverteb. toxicity	>100	0,1-100	<0,1		
LD50 acute (48h ug/ape)	Honey bees toxicity	>100	1-100	<1		
LC50 acute (14d mg/kg)	Eartworms toxicity	>1000	10-1000	<10		
Endocrin destrucor	Endocrine effects	no	possible	yes		
Reproduction and development	Reproductive effects	no	possible	yes		
ADI (mg/kg bw)	Accettable daily intake	> 0,1	0,01-0,1	≤ 0,01		

to give a "specific gravity environment"

Tuesday, 4th August 2015

Glyfhosate

	Environmental, eco-	Potential impact threshold					
Indicator	tossicological,		1	2	3		
	tossicological property	No data	Low	Medium	high		
Water solubility 20°C (mg/l)	Affinity for water				х		
Koc (ml/g)	Mobility		х				
DT50 soil (days)	Persistence in soil		х				
DT50 water - hydrolisis pH7 (days)	Persistence in water				х		
DT50 sed. (days)	Persistence in sediment			х			
GUS	Potenzial of leaching		х				
log Kow	affinità al bioaccumulo		х				
LD50 oral acute (mg/kg BW/day)	Mammalians toxicity			x			
LD50 acute (mg/kg)	Birds toxicity			x			
LC50 acute (96h-mg/l)	Fishes toxicity			х			
EC50 acute (48h mg/l)	Aquatic Inverteb. toxicity			х			
LD50 acute (48h ug/ape)	Honey bees toxicity			х			
LC50 acute (14d mg/kg)	Eartworms toxicity			х			
Endocrin destrucor	Endocrine effects	х					
Reproduction and development	Reproductive effects		х				
ADI (mg/kg bw)	Accettable daily intake			х			

