

per la protezione ambientale della Toscana

Monitoraggio ambientale corpi idrici superficiali: fiumi, laghi, acque di transizione

> Triennio 2022-2024

Monitoraggio ambientale corpi idrici superficiali: fiumi, laghi, acque di transizione

Triennio 2022-2024

Firenze, 2025

Monitoraggio ambientale corpi idrici superficiali: fiumi, laghi, acque di transizione triennio 2022-2024

A cura del Settore Indirizzo tecnico delle attività (SITA), ARPAT

parte integrante il report:

Monitoraggio e classificazione della fauna ittica in corsi d'acqua della Toscana. Applicazione dell'Indice NISECI - Relazione annuale

a cura di:

Annamaria Nocita, Sistema Museale di Ateneo, Museo di Storia Naturale, Sede La Specola

con il contributo di:

SIRA, Settori Laboratorio ARPAT, Dipartimenti ARPAT, Settore Mare ARPAT

Copertina e editing: ARPAT, Settore Comunicazione, informazione e documentazione Immagine di copertina: Wirestock, Freepik.com

ARPAT 2025

Indice

Sintesi	5
Glossario	5
1- Introduzione e metodologia	7
2 – Campionamento e profili di analisi	9
3 – Parametri analizzati in corpi idrici fluviali	10
4 – Difficoltà di campionamento	13
5 – Specie alloctone	14
6 – Indici sperimentali IQM – NISECI – BIOTA	16
7 - Fiumi - Stato Ecologico e stato Chimico	19
8 – Potenziale ecologico – Corpi Idrici Fortemente Modificati (CIFM)	24
9 - Laghi	27
10 - Acque di transizione	29
Allegato 1 - Classificazione sottobacini	34
BACINO ARNO	34
BACINO OMBRONE GROSSETANO	39
BACINO TOSCANA COSTA	42
BACINO SERCHIO	45
BACINI INTERREGIONALI	47
Allegato 2 - Monitoraggio e classificazione della fauna ittica in corsi d'acqua del	lla Toscana

Sintesi

Il triennio 2022-2024 apre il terzo sessennio di applicazione della direttiva europea ¹ per il monitoraggio delle acque superficiali, iniziato nel 2010.

Esistono due tipi di monitoraggio: biologico, distribuito in tre anni e chimico, che prevede una differenziazione in base alle pressioni insistenti sul corpo idrico. La classificazione prende in considerazione solo la matrice acqua per fiumi e laghi, e sedimenti nelle acque di transizione. Sono trattati in un capitolo a parte gli indici, ancora in via sperimentale Iqm -qualità morfologica, NIseci – studio della comunità ittica e biota, ricerca di sostanze pericolose nel pesce.

Glossario

Sigla	Significato
WISE	Water Information System for Europe
LW	Lake water - laghi
RW	River water - fiumi
TW	Transitional water - acque di transizione
Stato Ecologico	deriva dal peggior risultato tra gli indici: MB,MF,D,LimEco e Tab 1B
Stato Chimico	deriva dal confronto con lo SQA e CMA dei parametri ricercati
Soglie chimiche	
SQA	Standard Qualità Ambientale
СМА	Concentrazione Massima Ammissibile
LOQ	Limite di quantificazione
Indicatori	
МВ	Macroinvertebrati
MF	Macrofite
D	Diatomee
LimEco	Livello inquinamento da macrodescrittori per lo stato ecologico (ossigeno e nutrienti)
Tab 1A	parametri tabella 1/A dell'Allegato 1 Parte Terza del D.Lgs 152/06
Tab 1B	parametri tabella 1/B dell'Allegato 1 Parte Terza del D.Lgs 152/06
E	Stato ecologico elevato
В	Stato ecologico e chimico buono
SU	Stato ecologico sufficiente
SC	Stato ecologico scarso
С	Stato ecologico cattivo
NB	Stato ecologico e chimico non buono
Abbreviazioni paramo	etri
ВаР	benzo[a]pirene

¹ Direttiva europea 2000/60/CE (WFD), recepita in Italia con il D. Lgs. 152/06 e successivi Decreti nazionali e Delibere Regionali, riguarda fiumi, laghi e acque di transizione

BghiP	benzo(ghi)pirene
C4CI6	esaclorobutadiene
Cd	cadmio
СНСІЗ	triclorometano
cibu	cibutrina
Cr	cromo totale
Hg	mercurio
Ni	nichel
OPE	ottilfenoli
PBDE	difeniletere bromurati

CMA Concentrazione Massima Ammissibile

ISPRA Istituto Superiore per la Protezione e Ricerca Ambientale

LOQ Limite di quantificazione

SQA Standard Qualità Ambientale

Stato Chimico Deriva dal confronto con lo SQA e CMA dei parametri ricercati

Stato Ecologico Deriva dal peggior risultato tra gli indici: MB,MF,D,LimEco e Tab 1B

Tab 1 B Parametri tabella 1/B dell'Allegato 1 Parte Terza del D.Lgs 152/06
Tab 1 A Parametri tabella 1/A dell'Allegato 1 Parte Terza del D.Lgs 152/06

TW Transitional water - acque di transizione

1- Introduzione e metodologia

Le attività di monitoraggio su acque superficiali fluviali, lacustri e di transizione sono distribuite nell'arco di un triennio. I risultati in termini di classificazione come stato ecologico e chimico sono la base conoscitiva dei **Piani di Gestione** redatti dai Distretti idrografici.

Il presente rapporto **conclude il triennio 2022-2024**, che coincide con l'inizio del nuovo sessennio. La normativa regionale che definisce i criteri, mutuati da norme europee, nazionali, linee guida di SNPA, e individua i corpi idrici su cui insiste il punto di monitoraggio, è la DGRT 847/13.

Nel corso del 2024 sono stati rivisti tutti gli accessi ai luoghi di monitoraggio su fiumi, torrenti e canali e la DGRT 1589/2024 riporta la sintesi dei cambiamenti resesi necessari e l'elenco con le coordinate aggiornate dei punti di monitoraggio su acque correnti; restano da revisionare le postazioni su laghi e in parte le acque di transizione. Tale revisione ha comportato anche una modifica nei set analitici individualizzando qui corpi idrici, sui quali dal 2025 in poi sarà possibile effettuare solo il campione chimico, in quanto non guadabili o con accessi troppi ripidi e quindi non in sicurezza per gli operatori.

I monitoraggi previsti sono di due tipi in funzione delle pressioni cui è sottoposto il corpo idrico: *monitoraggio operativo* se il corpo idrico è a rischio di non raggiungere l'obiettivo di qualità buona richiesto dalla normativa europea, oppure *monitoraggio di sorveglianza* su quei corpi idrici su cui non insistono pressioni o quantomeno sono pressioni di lieve entità. Le due tipologie di monitoraggio differiscono nella frequenza di campionamento dei parametri chimici rappresentativi, che può essere annuale o triennale (in sporadici casi frequenza sessennale).

Tinologia corno idrico	Stazioni monitorate triennio 2022-2024 (operativi + sorveglianza)
RW - fiumi e torrenti	223
LW - laghi e invasi	26
TW - acque di transizione	10

Ogni punto di campionamento ha uno specifico profilo analitico, che deriva dalla tipologia delle pressioni presenti sul corpo idrico e dalle analisi effettuate nel decennio precedente dall'Agenzia. I singoli risultati analitici e la loro elaborazione in indici sono consultabili sul sito ARPAT alla voce Banche dati. Nello specifico si tratta della Banca-dati-rete MAS

http://www.arpat.toscana.it/datiemappe/banche-dati/banca-dati-mas-acque-superficiali-in-toscana

I **criteri per l'elaborazione** delle migliaia di dati processati nell'anno/triennio sono quelli previsti dalle normative europee (Direttiva 2000/60 EU) e nazionali (D. Lgs. 152/06 integrato dalla quota ancora valida del DM 260/2010 e dagli aggiornamenti apportati dal D. Lgs. 172/15), a cui si aggiungono le linee guida di ISPRA per l'applicazione di indici biologici su matrice acqua e indici chimici su matrice acqua, biota e sedimento (quest'ultimo limitato alle acque di transizione).

Lo stato ECOLOGICO, declinato in 5 classi di qualità (elevato, buono, sufficiente, scarso, cattivo), deriva dalla combinazione di cinque indicatori, scegliendo il peggiore dei risultati tra quelli monitorati, riportati in elenco:

- macroinvertebrati,
- macrofite,
- diatomee bentoniche,
- LimEco, livello di inquinamento da macrodescrittori (ossigeno in saturazione, azoto ammoniacale, nitrico e fosforo totale),
- concentrazione media delle sostanze pericolose di cui alla tabella 1/B Allegato 1 Parte III del
 D.Lgs 152/06. L'indicatore derivante dal confronto del valore di concentrazione media
 triennale di ogni sostanza analizzata, con il relativo standard di qualità ambientale, prevede
 soltanto tre stati di qualità: elevato, buono e sufficiente.

La Direttiva 2000/60/UE prevede la determinazione degli elementi idromorfologici a sostegno degli elementi biologici per la classificazione dello stato ecologico dei corsi d'acqua, attraverso l'applicazione dell'indice di qualità morfologica IQM.

Lo **stato CHIMICO** deriva dall'analisi delle sostanze pericolose di cui alla tabella **1/A** Allegato 1 Parte III del D.lgs. 152/06; secondo i criteri introdotti dal D.lgs. 172/15. Il calcolo della media delle concentrazioni rilevate dei vari parametri viene confrontato con lo standard di qualità ambientale e, laddove presente, con la concentrazione massima ammissibile per quel parametro. Lo stato diventa non buono nel momento in cui un solo parametro supera dette soglie; lo stato chimico, infatti, prevede due soli livelli di qualità: buono o non buono.

Agli indici sopra elencati sono da aggiungere lo studio della comunità ittica, che va ad incrementare le informazioni che costituiscono lo stato ecologico e lo studio della persistenza di sostanze pericolose nel biota, inteso come il tipo di pesce caratteristico del corpo idrico in esame. Quest'ultima informazione va ad incrementare il giudizio di qualità chimica.

Entrambi gli indici sono ancora in via sperimentale, ragion per cui ARPAT ritiene opportuno considerarli a sé stanti e non inclusi dello stato ecologico e chimico. In primo luogo, il numero di dati

relativi ad essi è significativamente più basso delle informazioni chimiche e biologiche su cui si basano le classificazioni, in secondo luogo ci sono ancora dubbi sull'interpretazione, e spesso anche sul calcolo, dopo i primi anni di applicazioni delle linee guida SNPA relative.

In modo particolare, lo studio della fauna ittica richiede la metodologia di campionamento con elettrostorditore e un approfondimento sulla tassonomia di notevole impegno per gli operatori già impegnati negli altri bioindicatori. Per tali motivi dal 2024 è in essere una convenzione per l'applicazione dell'indice NISECI - studio della comunità ittica fluviale, con l'Università degli Sudi di Firenze.

2 - Campionamento e profili di analisi

Il profilo o protocollo analitico dei punti di campionamento è diverso per i punti in monitoraggio operativo o di sorveglianza: se si tratta di monitoraggio operativo, il protocollo di analisi rispecchia la tipologia prevalente di pressione, e quindi richiede i parametri chimici (quelli biologici sono sempre stratificati sul triennio) più sensibili a misurare il livello di pressione. Nei punti in monitoraggio di sorveglianza, non a rischio, il protocollo di campionamento prevede di effettuare il set completo di parametri chimici e biologici nel triennio o, laddove le pressioni sono davvero minime, nei sei anni di vigore del Piano di Tutela.

La frequenza annuale **di campioni** per la determinazione di sostanze chimiche varia da 6 a 4; ciò in accordo con la Regione Toscana fin dall'inizio dell'applicazione della direttiva europea. La frequenza per i parametri biologici varia da 3 a 2, e per i macroinvertebrati prevede il doppio campione in pool (pozza con scorrimento dell'acqua molto lento) e riffle (correntino tratto di fiume in cui l'acqua scorre veloce) laddove sono facilmente distinguibili, altrimenti in due siti generici ma rappresentativi della diversità di habitat fluviale.

Per quanto riguarda i **metodi** di campionamento e di analisi chimiche e biologiche, ARPAT applica le metodologie pubblicate da ISPRA; per informazioni di dettaglio si rimanda alle pubblicazioni specifiche e alla consultazione delle banche date sul sito dell'Agenzia in cui si può selezionare la voce "metodo".

La metodologia **IQM** si applica a scala di tratto e preme sottolineare come in ARPAT tale tratto è coincidente con la zona dove è localizzata la stazione di monitoraggio per biologia e chimica. Il metodo applicato segue quindi le linee guida ISPRA MLG 131/2016 e l'istruzione operativa interna.

3 - Parametri analizzati in corpi idrici fluviali

In accordo alla normativa (D. Lgs. 152/06 parte III – All. 1), le sostanze pericolose prioritarie e non, richieste sulla **matrice acqua** sono le seguenti:

Parametri tab 1A μg/l	SQA-MA	СМА	Parametri tab 1B μg/l	SQA-MA
ACIDO PERFLUOROTTANSOLFONICO (PFOS)	0,00065	36	ACIDO PERFLUOROBUTANOICO (PFBA)	7
ACLONIFEN	0,1		ACIDO PERFLUOROBUTANSOLFONICO (PFBS)	3
ALACLOR	0,3	0,7	ACIDO PERFLUOROESANOICO (PFHXA)	1
ANTRACENE	0,1	0,1	ACIDO PERFLUOROOTTANOICO (PFOA)	0,1
ATRAZINA	0,6	2	ACIDO PERFLUOROPENTANOICO (PFPEA)	3
BENZENE	10	50	ACIDO 2,4DICLOROFENOSSIACETICO	0,5
BENZO [A] PIRENE	0,00017	0,27	ARSENICO	10
BENZO[B]FLUORANTENE		0,017	CLOROBENZENE	3
BENZO[GHI]PERILENE		0,0082	CROMO TOTALE	7
BENZO[K]FLUORANTENE			DIMETOATO	0,5
CADMIO	0,25	1,5	LINURON	0,5
CIBUTRINA	0,0025	0,016	MALATION	0,01
CIPERMETRINA	0,00008	0,0006	МСРА	0,5
CLORFENVINFOS	0,1	0,3	MECOPROP	0,5
CLORPIRIFOS	0,03	0,1	METAMIDOFOS	0,5
DICLOROMETANO	20		ORTOXILENE	5
DIFENILETERE BROMATO		0,14	TERBUTILAZINA	0,5
DIURON	0,2	1,8	TOLUENE	5
DI(2ETILESIL) FTALATO	1,3		1,1,1TRICLOROETANO	10
ENDOSULFAN	0,005	0,01	1,2DICLOROBENZENE	2
ESACLOROBENZENE (HCB)	0,005	0,05	1,3DICLOROBENZENE	2
ESACLOROBUTADIENE	0,05	0,6	1,4DICLOROBENZENE	2
FLUORANTENE	0,0063	0,12	2CLOROANILINA	1
INDENO[1,2,3CD]PIRENE			2CLOROFENOLO	4
IPA TOTALI			2CLOROTOLUENE	1
ISOPROTURON	0,3	1	2,4DICLOROFENOLO	1
MERCURIO		0,07	2,4,5TRICLOROFENOLO	1
NAFTALENE	2	130	2,4,6TRICLOROFENOLO	1
NICHEL	4	34	3CLOROANILINA	2
OTTILFENOLI	0,1		3CLOROFENOLO	2
PENTACLOROBENZENE	0,007		3CLOROTOLUENE	1
PENTACLOROFENOLO	0,4	1	3,4DICLOROANILINA	0,5
PIOMBO	1,2	14	4CLOROANILINA	1
SIMAZINA	1	4	4CLOROFENOLO	2

Parametri tab 1A μg/l	SQA-MA	СМА	Parametri tab 1B μg/l	SQA-MA
TETRACLOROETILENE	10		4CLOROTOLUENE	1
TETRACLORURO DI CARBONIO	12			
TRIBUTILSTAGNO (COMPOSTI)	0,0002	0,0015		
TRICLOROBENZENI	0,4			
TRICLOROETILENE	10			
TRICLOROMETANO	2,5			
TRIFLURALIN	0,03			
1,2DICLOROETANO	10			
4(PARA)NONILFENOLO	0,3	2		

Elenco dei principi attivi di fitofarmaci ricercati da ARPAT:

Fitofarmaci ricercati in ARPAT - μg/I			SQA-MA = 0,1 μg/l
ACETAMIPRID	DAZOMET	ISOXAFLUTOLE	PROCIMIDONE
ACETOCLOR	DICAMBA	LENACIL	PROCLORAZ
ACIDO AMINOMETILFOSFONICO (AMPA)	DIMETENAMIDE	MANDIPROPAMIDE	PROPAZINA
AMETOCTRADINA	DIMETOMORF	MEPANIPYRIM	PROPICONAZOLO
ATRAZINA, DEISOPROPIL-	ENDOSULFAN SOLFATO	METALAXIL-M	PROPIZAMIDE
ATRAZINA, DESETIL-	ETOFUMESATE	METAMITRON	PROPOSSICARBAZONE
AZOSSISTROBINA	ETOPROFOS	METAZACLOR	PROPOXUR
BENALAXIL	FENAMIDONE	METIOCARB	QUINOXIFEN
BOSCALID	FENAMIFOS	METOLACLOR-S	SPIROTETRAMAT
BUPIRIMATE	FENHEXAMID	METOXYFENOZIDE	SPIROXAMINA
CARBENDAZIM	FENPIRAZAMINA	METRIBUZIN	TEBUCONAZOLO
CHLORANTRANILIPROLE	FENPROPIDIN	NAPROPAMIDE	TEBUFENOZIDE
CIAZOFAMID	FLUDIOXONIL	OXADIAZON	TERBUTILAZINA, DESETIL-
CICLOXIDIM	FLUFENACET	OXYFLUORFEN	TETRACONAZOLO
CIPROCONAZOLO	FLUOPICOLIDE	PENCONAZOLO	THIACLOPRID
CIPRODINIL	FLUOPYRAM	PENDIMETALIN	THIAMETHOXAM
CLOMAZONE	FLUROXIPIR	PETOXAMIDE	TOLCLOFOS-METILE
CLORPIRIFOS-METILE	FLUTRIAFOL	PICOSSISTROBINA	TRALCOXYDIM
CLORSULFURON	GLIFOSATE	PINOXADEN	TRIBENURON-METILE
CLORTOLURON	IMIDACLOPRID	PIRACLOSTROBINA	TRICICLAZOLO
CLOTIANIDIN	IPROVALICARB	PIRIMETANIL	TRITICONAZOLO
	ISOXABEN	PIRIMICARB	ZOXAMIDE

In merito allo stato ecologico, i parametri **biologici** determinati, in termini di rilevazione dei taxa, con determinazione fino alla specie sono:

Parametri biologici. Rilevazioni singolo taxa	Classi di qualità
Macroinvertebrati bentonici	5
Macrofite alveo bagnato	5
Diatomee bentoniche	5

contemporaneamente sono effettuate analisi di nutrienti e parametri chimico-fisici in campo.

Parametri determinati nei sedimenti delle acque di transizione:

Parametri in sedimenti acque di transizione	SQA-MA		
ALDRIN – μg/kg	0,2	DDD – μg/kg	0,8
ALFA ESACLOROCICLOESANO – μg/kg	0,2	DDE – μg/kg	1,8
ANTRACENE – μg/kg	24	DDT (ISOMERI, METABOLITI) – μg/kg	1
ARSENICO - mg/kg s.s.	12	DIELDRIN – μg/kg	0,2
BENZO [A] PIRENE – μg/kg	30	ESACLOROBENZENE (HCB) – μg/kg	0,4
BENZO [B] FLUORANTHENE – μg/kg	40	FLUORANTENE – μg/kg	110
BENZO [GHI] PERILENE – μg/kg	55	INDENO[1,2,3-CD]PIRENE – μg/kg	70
BENZO [K] FLUORANTHENE – μg/kg	20	MERCURIO - mg/kg s.s.	0,3
BETA ESACLOROCICLOESANO – μg/kg	0,2	NAFTALENE – μg/kg	35
CADMIO - mg/kg s.s.	0,3	PIOMBO - mg/kg s.s.	30
CROMO TOTALE - mg/kg s.s.	50	TRIBUTILSTAGNO – μg/kg	5
CROMO VI - mg/kg s.s.	2		

4 - Difficoltà di campionamento

I principali fattori che portano all'impossibilità di eseguire i campionamenti per parametri chimici e biologici sono collegati a frequenti momenti di siccità e ai lavori relativi alla messa in sicurezza da rischio idrogeologico che di fatto rappresentato un impatto significativo sull'habitat fluviale di sponda soprattutto relativamente al taglio di vegetazione alla mancanza di acqua nei corpi idrici e in alcuni casi all'impatto causato dai lavori di manutenzione in alveo e lungo le sponde. Questi fattori, uniti al cambiamento dell'ambiente, con il trascorrere del tempo determinano spesso condizioni ambientali che rendono difficile l'accesso in alveo in sicurezza per gli operatori.

Nella tabella successiva si riportano alcuni casi in cui il sopralluogo non ha dato esito a campionamento. Il monitoraggio biologico è quello più spesso compromesso.

Nelle relazioni degli anni precedenti sono riportati altre casistiche su altrettanto corpi idrici

Alcuni esempi di campionamenti non effettuati nel 2024					
Mese sopralluogo	Codice	Nome corpo idrico	Causa		
Agosto	MAS-056	Albegna valle	Impossibile campionamento biologico – macrofite per profilatura sponde		
Giugno	MAS-522	Ciuffenna	Impossibile campionamento biologico – sistemazione sponde		
Aprile/luglio	MAS-2006	Crespina	Secca		
Giugno	MAS-135	Elsa valle	Accesso non in sicurezza per folta vegetazione		
Ottobre	MAS-517	Pesa valle	Assenza di vegetazione spondale		
Luglio/ottobre	MAS-2012	Pesciola	Presenza di sole pozze con acqua stagnate		
Giugno/agosto	MAS-2024	Chiesimone	Impossibile accesso per sponde in cemento e ripide, oltre ad essere in secca		
Luglio	MAS-110	Arno a Calcinaia	I substrati artificiali precedentemente installati sono stati rimossi da ignoti		

I casi sono abbastanza distribuiti nel territorio regionale dove i periodi di secca sono favoriti dal carattere torrentizio della maggior parte dei fiumi toscani, dalla trasformazione del regime delle piogge, meno frequenti ma a carattere alluvionale, dall'aumento della temperatura legata ai cambiamenti climatici, a cui si aggiungono consistenti prelievi dai vari comporti produttivi.

A questi problemi si aggiungono alterazioni di tipo idromorfologico effettuate per limitare il rischio idrogeologico. Gli interventi richiesti dalla Direttiva 2000/60 EU, direttiva quadro sulle acque e dalla Direttiva 2007/60 EU, conosciuta come direttiva alluvioni, dovrebbero convergere su un obiettivo condiviso e comune.

La nuova delibera regionale 1589 approvata nel 2024 relativa alla revisione della rete di monitoraggi delle acque fluviali, va nella direzione di un maggiore condivisione e collaborazione tra l'Agenzia ed i Consorzi di Bonifica; infatti recita" ... necessario che i Consorzi di Bonifica, quali enti competenti alla programmazione ed esecuzione degli interventi e delle operazioni di gestione ordinaria del reticolo fluviale, effettuali all'interno dell'alveo fluviale, connesse al mantenimento della sicurezza idraulica, qualora detti interventi avvengano sui corpi idrici nei quali sono individuate stazioni di monitoraggio di cui all'allegato B, provvedano ad informare, entro il 31 dicembre di ogni anno, ARPAT circa le modalità e tempistiche di esecuzione di dette attività nell'anno successivo".

5 - Specie alloctone

Nel decennio in atto si è aggiunto un ulteriore impatto sugli ambienti fluviali: la presenza di specie alloctone/esotiche invasive/aliene sia nella comunità di macroinvertebrati che di macrofite. La loro presenza è da imputare, da un lato ad immissioni più o meno accidentali, e dall'altro all'aumento della temperatura nei fiumi.

La normativa di riferimento è il Regolamento UE 1143/2014, con il quale l'Unione europea ha approvato le disposizioni necessarie per prevenire l'introduzione e contrastare la diffusione di queste ultime. In Italia è entrato in vigore il D. Lgs. 230/2017 che riguarda le misure gestionali relative a prevenire e governare l'introduzione e la diffusione delle specie esotiche invasive oltre ad individuare gli enti che si devono occupare dell'attuazione del Regolamento a livello nazionale e le sanzioni penali e amministrative, per la violazione alle disposizioni della normativa.

ARPAT non ha tra le sue competenze quella della gestione delle specie esotiche, ma negli ultimi anni si intensifica l'attenzione durante le attività di biomonitoraggio, al fine di individuare la presenza di specie non rilevate negli anni passati.

L'eventuale presenza viene annotata nella banca dati della cosiddetta rete MAS, limitatamente a esemplari di macroinvertebrati e macrofite.

Elenco macroinvertebrati appartenenti a specie alloctone rinvenute nel biomonitoraggio del 2024			
Barbronia weberi Potamopyrgus antipodarum			
Brachyura sowerbyi	Procambarus clarckii		
Corbicula fluminea	Pseudosuccinea columella		
Girardia tigrina	Sinanodonta woodiana		
Orconectes limosus	Sinotaia quadrata		
Physella acuta			

Elenco macrofite appartenenti a specie alloctone rinvenute nel biomonitoraggio del 2024			
Ailanthus altissima	Helianthus tuberosus		
Amaranthus hybridus	Impatiens balfourii		
Amorpha fruticosa	Juglans regia		
Artemisia verlotiorum	Ludwigia peplodes		
Arundo donax,	Paspalum papaloides		
Bidens frondosa	Reynoutria japonica		
Buddleja davidii	Robinia pseudacacia		
Cyperus eragrostis	Solidago giganteae		
Didymosphenia geminata	Symphiotrichum novi-belgi		
Erigeron canadensis	Xanthium orientale subsp orientale		

La distribuzione di questi esemplari è abbastanza omogenea nella regione soprattutto in corsi d'acqua di pianura e in condizione ambientali più alterate.

6 - Indici sperimentali IQM - NISECI - BIOTA

L'IQM indice di qualità morfologica rappresenta un indice a sé stante, di supporto all'interpretazione dello stato ecologico.

Il calcolo dell'indice combina tre importanti aspetti idromorfologici che sono la funzionalità, l'artificialità e le variazioni morfologiche subite dal tratto di corso d'acqua analizzato. La linea guida di riferimento è Manuale Ispra 131/2016.

IQM indice qualità morfologico									
Anno di campionamento	Bacino idrografico	Corpo idrico	Codice	Qualità IQM					
2021	Arno	Sieve monte	MAS-119	buono					
2020	Arno	Greve monte	MAS-536	scarso					
2022	Arno	Cerfone	MAS-856	scarso					
2022	Arno	Sieve medio	MAS-120	scarso					
2023	Arno	Fistona	MAS-916	moderato					
2023	Arno	Resco	MAS-922	moderato (*)					
2023	Arno	Fiumenta	MAS-972	moderato					
2023	Arno	Bozzone (1)	MAS-531	moderato					
2023	Arno	Levisone	MAS-505	buono (*)					
2024	Arno	Sieve Valle	MAS-121	moderato					
2024	Arno	Elsa Valle inf	MAS-135	moderato					
2024	Arno	Crespina	MAS-2006	moderato					
2024	Arno	Staggia (2)	MAS-927	moderato					
2019	Aulla magra	Chiusella	MAS-914	moderato					
2023	Interregionale	Tevere monte	MAS-060	buono (*)					
2023	Interregionale	Reno valle	MAS-094	buono (*)					
2024	Ombrone grossetano	Merse valle	MAS-041	buono					
2024	Toscana nord	Frigido	MAS-025	buono					
			(*) valore al limite	e con la classe peggiore					

Quelli dell'IQM sono pochi dati per aver un quadro sufficientemente indicativo, in ogni modo si osserva l'assenza dello stato elevato ed una predominanza di stato moderato (corrisponde al sufficiente degli altri bioindicatori), soprattutto se sommati gli stati buoni con un valore numerico prossimo al passaggio alla classe successiva.

	Ricerca sostanze pericolose nel biota, specie ittica target campioni. Anno 2024										
Tipo	Anno di campiona mento	Bacino idrografico	Corpo idrico	Codice	Biota annuale	Biota: parametri critici					
RW	2024	Arno	Archiano	MAS-067A	non buono	mercurio					
RW	2024	Arno	Ombrone pt medio	MAS-129	non buono	mercurio					
RW	2024	Arno	Elsa valle superiore	MAS-134	non buono	mercurio					
RW	2024	Fiora	Procchio	MAS-501	non buono	mercurio					
RW	2024	Arno	Brana	MAS-512	non buono	mercurio					
RW	2024	Toscana Costa	Savalano	MAS-526	non buono	mercurio					
RW	2024	Serchio	Pedogna	MAS-834	non buono	mercurio e pfos					
RW	2024	Arno	Fiumenta	MAS-972	non buono	mercurio					
RW	2024	Serchio	Rio Guappero	MAS-995	non buono	mercurio					

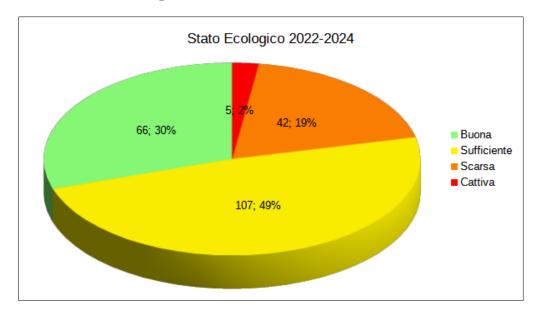
Le analisi sui campioni di pesce effettuate nel 2024 risultano tutti non conformi, per il superamento dei limiti previsti per il mercurio e in un caso anche per il Pfos.

Tali dati non differiscono dai risultati degli anni precedenti.

In acque superficiali sulla matrice biota sono determinati i seguenti parametri:

Parametri determinati sul Biota μg/kg	SQA-MA
ACIDO PERFLUOROTTANSOLFONICO E SUOI DERIVATI (PFOS)	9,1
DDT TOTALE t.q.	50
DICOFOL t.q.	33
DIFENILETERE BROMURATI TOTALI t.q.	0,0085
ESACLOROBENZENE (HCB) t.q.	10
ESACLOROBUTADIENE t.q.	55
MERCURIO E SUOI COMPOSTI t.q.	20
SOMMATORIA T.E. PCDD, PCDF E PCB DL – TE/kg	0,0065

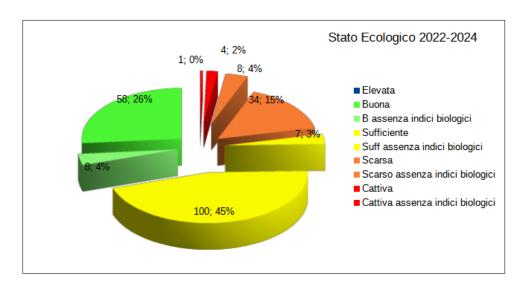
In acque fluviali le specie ittiche pescate più frequentemente, per la ricerca di sostanze pericolose nell'organismo in totale, non in specifici tessuti, sono:

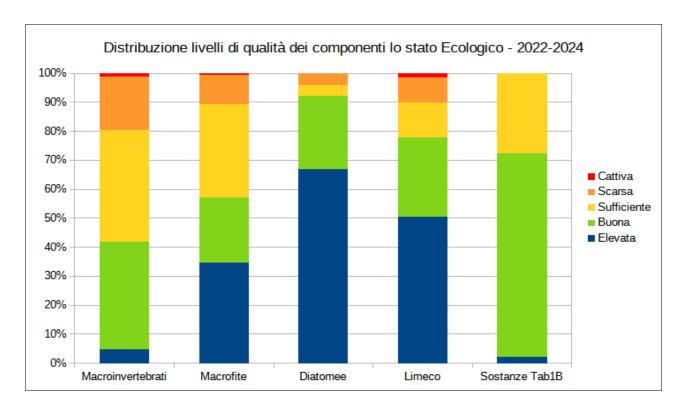

- Squalius cephalus (Linnaeus, 1758) cavedano
- Luciobarbus graellsii (Steindachner, 1866) barbo di Graells
- Telestes souffia (Risso, 1827) vairone occidentale
- Telestes muticellus (Bonaparte, 1837) vairone italiano
- Mugil cephalus (Linnaeus, 1758) cefalo comune
- Liza ramada (Risso, 1827) cefalo calamita
- Barbus Cuvier & Cloquet, (1816) barbo
- Salmo trutta Linnaeus, (1758) trota

In merito alle attività di applicazione dell'indice **Niseci** - studio della fauna Ittica fluviale si rimanda alla lettura della relazione – parte integrante del presente report – a cura della dr.ssa Annamaria Nocita del Sistema Museale La Specola dell'Università di Firenze.

Di seguito si riporta soltanto l'elenco dei corpi idrici campionati e relativo stato di qualità:

Sintesi applicazione NISECi anno 2024								
Codice	Denominazione coso d'acqua	RQEniseci	Stato ecologico Niseci					
MAS-067	Fiume Paglia	0,540	moderato					
MAS-526	Torrente Marmolaio (°)	0,573	moderato					
MAS-530	Fiume Elsa	0,759	buono					
MAS-834	Torrente Pedogna	-0,027	cattivo					
MAS-995	Rio Guappero	0,299	scadente					
MAS-129	Torrente Ombrone pistoiese	0,173	cattivo					
MAS-501	Fosso del Procchio	0,260	scadente					
MAS-512	Torrente Brana	0,243	scadente					
MAS-949	Torrente Salutio	0,612	buono					
MAS-972	Torrente Fiumenta	0,634	buono					
(°) area omogenea del Savalano								


7 - Fiumi - Stato Ecologico e stato Chimico


Prima di passare al dettaglio dei singoli corpi idrici, viene fornita una panoramica della qualità dell'intera regione nel periodo 2022-2024.

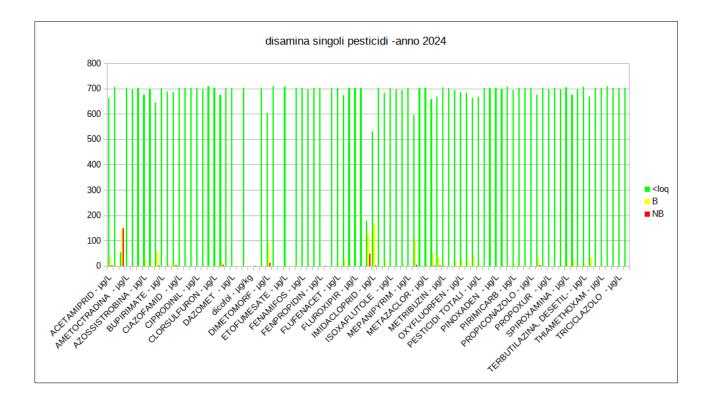
L'obiettivo dettato dalla Direttiva 2000/60 UE di stato ecologico buono e/o elevato è raggiunto nel 30% dei corpi idrici, <u>13 punti percentuali in meno rispetto al triennio precedente</u>; l'obiettivo buono come stato chimico è raggiunto nel 55% dei corpi idrici della regione, <u>5 punti percentuali in meno rispetto al triennio precedente</u>.

Preme sottolineare come sia sempre più difficoltoso effettuare il campionamento biologico che prevede la discesa in alveo degli operatori per prelevare campioni di fauna e flora; nel grafico successivo le classi di qualità sono suddivise tra campioni con monitoraggio completo e campioni con monitoraggio privo degli indici biologici quindi derivante soltanto dalla combinazione di parametri chimici (limEco e sostanze di tab1 B All1 parte terza del D.Lgs 152/06 le cosiddette sostanze non appartenenti all'elenco di priorità).

La distribuzione delle classi di qualità evidenzia anche la mancanza di stato ecologico elevato e complessivamente la percentuale di campioni classificati senza bioindicatori è del 13%.

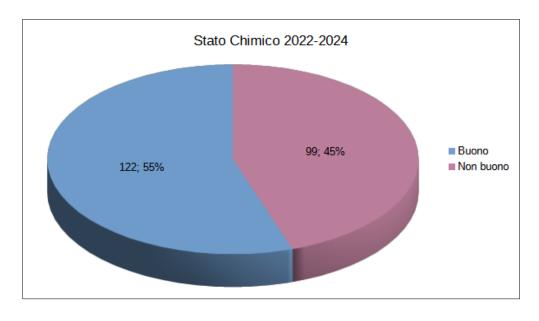


Gli indici che costituiscono lo stato ecologico sono 5 e con la regola "del peggiore vince", l'indice determinante risulta essere la comunità di macroinvertebrati seguita da quelle delle macrofite, mentre diatomee e Limeco risultano con una percentuale più elevati di qualità buona. Le analisi di sostanze pericolose di tabella 1B contribuiscono con sole 3 classi di qualità, con la predominanza dello stato buono.


Nei grafici successivi si riporta una disamina dei **singoli** dati determinati nel corso del 2024 relativamente ai parametri di tab 1B, che concorrono alla definizione dello stato ecologico. Tali sostanze sono divise in due gruppi, le prioritarie e i principi attivi di fitofarmaci sono considerati a parte, anche per una migliore lettura dei grafici, considerato il numero di parametri analizzati in un anno.

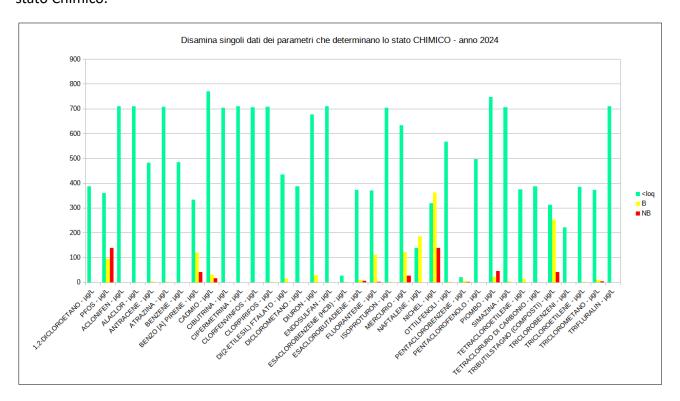
Nel grafico seguente ogni singolo dato è stato confrontato con lo standard di qualità ambientale (SQA) previsto dal D.Lgs 152/06, quindi è una rappresentazione cautelativa in quanto la norma indica il confronto della media del triennio con lo SQA, qui invece è il singolo dato confrontato, non mediato. In rosso sono riportati gli unici dati superiori allo SQA, in giallo i valori quantificati ma con concentrazioni inferiori allo SQA e in verde i risultati espressi come <LOQ, ossia non quantificabili con le migliore tecniche analitiche utilizzate.

I parametri che possono destare attenzione sono l'arsenico (28 dati superiori allo SQA, 278 dati quantificabili e 513 <loq) e il cromo totale (27 dati superiori allo SQA, 170 dati quantificabili e 623 <loq), rappresentati con gli istogrammi rossi.


Nel proseguo una simile disamina viene fatta per i soli principi attivi di fitofarmaci.

Anche in questo caso la stragrande maggioranza dei parametri riporta valori <loq; i fitofarmaci che mostrano una presenza critica sono: ampa (152 dati positivi sul totale di 354 analisi), glifosato (51 dati positivi sul totale di 354 analisi), dimetomorf (13 dati positivi su 711 totali).

Criticità minori il metalaxil (13 dati positivi su 711 totali) a seguire altri fitofarmaci con poche unità di dati positivi a fronte di centinaia di analisi in un solo anno: metolaclor, clortoluron, imidacloprid.


Lo stesso tipo di elaborazione è stata fatta relativamente ai parametri di tabella 1 A che determinano lo stato **Chimico.**

I parametri critici che determinato lo scadimento dello stato chimico sono: pfos, mercurio (per il quale è prevista la concentrazione massima ammissibile e non il dato medio di concentrazione), nichel, benzo[a]pirene, cadmio.

Le criticità sono distribuite quasi uniformemente nella regione nei tratti medio vallivi dei corsi d'acqua monitorati.

Di seguito è riportata la disamina delle singole determinazioni dei parametri che competono allo stato Chimico.

Le sostanze pericolose che mostrano maggiore criticità risultano:

Il PFOS (acido perfluorottannsolfonico con 140 determinazioni positive su 596 totali), nichel (139 dati positivi su 820 totali), piombo (46 dati su 816 totali), benzo[a]pirene (42 dati positivi su 495 totali).

8 - Potenziale ecologico. Corpi Idrici Fortemente Modificati (CIFM)

L'elenco dei CIFM è quello riportato nella DGRT 1589/2024 che ha aggiornato la rete di monitoraggio dei corsi d'acqua.

Non risultano sviluppi o aggiornamenti a livello ministeriale sul metodo per il calcolo del Potenziale Ecologico (PE); quindi per elaborare il PE nel triennio in esame si adottano i criteri del Decreto Direttoriale n 341/STA del 30/05/2016.

Tale decreto prevede di eseguire anche sui CIFM il campionamento degli indici biologici, applicando successivamente i coefficienti di correzione per il calcolo della qualità da macroinvertebrati e macrofite, in modo tale da ottenere un indicatore detto Potenziale Ecologico che di fatto è uno stato ecologico "corretto", in ragione della presenza di forti artificializzazioni e alterazioni morfologiche che rendono impossibile raggiungere la qualità buona.

Gli indici necessari per calcolare il PE sono le submetriche dei macroinvertebrati e macrofite, a cui viene applicato un correttivo numerico, variabile a seconda dalla pressione responsabile della modificazione morfologica. Il decreto direttoriale 341/STA del 2016 prevede otto diverse tipi di pressione, dette 'casi', ad ognuna delle quali corrisponde un correttivo diverso; in molti casi però il correttivo non è previsto per entrambe le metriche dei macroinvertebrati o macrofite, ma rimanda ai riferimenti del DM 260/10 per lo stato ecologico.

La tabella successiva riassume i concetti fondamentali del DD 341/STA del 2016:

Modificazione			MB
idromorfologica significativa			
	1.Opere trasversali	0,95 o 260 secondo il macrotipo	ref260
Opere trasversali, longitudinali e rivestimenti del fondo frequenti e continui	2. Difese di sponda/ argini a contatto	0,95	ref260 eccetto pendenza <1%
	3. Rivestimenti del fondo	0,90	0,85
Dighe/opere trasversali a monte	4 Diga/briglia/traversa all'estremità di monte del corpo idrico	0,95 o 260 secondo il macrotipo	ref260
Opere trasversali generanti alterazioni idrodinamiche (creazione di tratti lentici, senza lago, a monte delle opere stesse)	5. Briglia/traversa all'interno del corpo idrico o alla sua estremità di valle	0,90	0,85
Regime idrologico fortemente alterato	6. Prevalenza di tratti a regime idrologico fortemente alterato (riduzioni ed aumenti significativi delle portate).	0,95 o 260 secondo il macrotipo	260 eccetto clogging
	7 Hydropeaking	Ref260	ref260
Combinazione di pressioni	8 Combinazione di più	0,95 o 260 secondo il	ref260
	pressioni di cui ai casi da 1 a 7	macrotipo	

I corpi idrici fortemente modificati indicati nella delibera del 2024 sono tali a causa di una molteplicità di pressioni a cui sono sottoposti, per cui ricadono tutti nella <u>casistica 8</u> della tabella precedente. Conseguentemente rimane invariata la qualità ecologica dovuta alla comunità di macroinvertebrati.

Nel caso delle macrofite nella casistica 8 "combinazione di più pressioni" si applica il correttivo 0,95 solo per alcuni macrotipi, per il resto anche in questo caso il giudizio rimane invariato; applicando questa regola si ha un miglioramento di una classe di qualità in 11 punti, quelli indicati con celle colorate nella tabella seguente.

Elenco CIFM della DG	RT 1589/2024	All B - (°) potenzi	ale e stato ecolo	gico immutati	
Nome corpo idrico	Codice	Correttivo (°)	Potenz Eco giudizio	Stato Eco giudizio	
Serchio medio superiore	MAS-003	No dati			
Serchio medio inferiore	MAS-004	Ref260 (°)	elevato	elevato	
Frigido	MAS-025	No dati			
Vezza	MAS-028	0,95	elevato	buono	
Versilia	MAS-029	0,95	buono	buono	
Tevere valle	MAS-061	0,95	buono	buono	
Arno aretino	MAS-102	0,95	sufficiente	sufficiente	
Arno valdarno superiore	MAS-106	0,95	sufficiente	sufficiente	
Arno fiorentino valle	MAS-108	0,95	scarso	scarso	
Arno valdarno inferiore	MAS-109	No dati			
Arno pisano	MAS-110	No dati			
Greve valle	MAS-123	0,95	sufficiente	sufficiente	
Bisenzio medio	MAS-125	Ref260 (°)	sufficiente	sufficiente	
Bisenzio valle	MAS-126	Ref260 (°)	scarso	scarso	
Mugnone	MAS-127	0,95	buono	sufficiente	
Ombrone pt medio	MAS-129	0,95	cattivo	cattivo	
Ombrone pt valle	MAS-130	Ref260 (°)	scarso	scarso	
Elsa valle inferiore	MAS-135	No dati			
Pescia collodi monte	MAS-140	0,95	buono	sufficiente	
Pescia collodi valle	MAS-142	0,95	elevato	buono	
Crespina	MAS.2006	No dati			
Pescia di pescia	MAS-2011	0,95	scarso	scarso	
Chiesimone	MAS-2024	0,95	elevato	elevato	
Arno fiorentino monte	MAS-503	0,95	sufficiente	sufficiente	
Cessana	MAS-510A	0,95	buono	sufficiente	
Brana	MAS-512	0,95	buono	sufficiente	

Elenco CIFM della DGRT 1589/2024 All B - (°) potenziale e stato ecologico immutati Nome corpo idrico Codice Correttivo (°) Potenz Eco giudizio Stato Eco giudizio Orme MAS-518 0,95 sufficiente scarso

Nome corpo idrico	Codice	Correttivo (°)	giudizio		Stato Eco giudizio
Orme	MAS-518	0,95	sufficiente		scarso
Savalano	MAS-526	0,95	elevato		sufficiente
Marina valle	MAS-535	0,95	buono		sufficiente
Camaiore lucese monte	MAS-539	0,95	buono		sufficiente
Turrite Gallicano	MAS-557	0,95	sufficiente		sufficiente
Resco	MAS-922	0,95	elevato		elevato
Carrione monte	MAS-942	0,95	elevato		elevato
Serchio lucchese	MAS-994	No dati			
Guappero	MAS-995	0,95	elevato		buono

9 - Laghi

Nel programma regionale di monitoraggio di laghi e invasi il **fitoplancton** è campionato in quanto costituisce uno degli elementi biologici sulla base dei quali effettuare la valutazione della qualità ecologica. A seguito della decisione della commissione europea del 20/9/2013, l'indice indicato negli anni precedenti come ICF (Indice Complessivo del Fitoplancton) è stato sostituito con il Metodo italiano di valutazione del fitoplancton o IPAM/NITMET, determinato sulla base di un anno di campionamento e si ottiene mediando gli indici medi di composizione e biomassa, ovvero:

- l'indice medio di biomassa, calcolato mediando i valori indici biologici normalizzati di "clorofilla <u>a"</u> e di "biovolume";
- l'indice di composizione PTI (Phytoplancton Trophic Index).

Sono previste le consuete cinque classi di qualità da elevato a cattivo. L'indice fitoplanctonico è calcolabile solo avendo i risultati di 6 campioni in un anno.

Il biomonitoraggio sui laghi è limitato a pochi esempi a causa soprattutto delle difficoltà a reperire mezzi nautici che permettano il campionamento in centro lago o invaso. Nel triennio in esame sono disponibili i dati di fitoplancton per lago di Chiusi, invaso di Bilancino, bacino della Calvanella e lago di Massaciuccoli. Il giudizio di qualità è scarso su Chiusi, buono per Bilancino e Calvanella e sufficiente per Massaciuccoli.

La maggior parte dei laghi e invasi sono utilizzati a scopo idropotabile, alcuni utilizzati anche solo in casi di emergenza idrica. Questo è il motivo per cui, in attesa di una revisione complessiva della rete di monitoraggio, la maggior parte degli invasi viene controllata solo nella parte chimica.

Lo **stato trofico** (LTLeco) prevede la combinazione di tre parametri: fosforo totale, ossigeno ipolimnico e trasparenza; in tutti i punti di monitoraggio risulta di qualità sufficiente. Tale dato è da considerarsi un probabile sufficiente in quanto il parametro fosforo in alcuni laboratori non viene determinato con il loq adeguato, inoltre non sempre è disponibili il dato di ossigeno ipolimico ma viene sostituito con il valore di ossigeno in saturazione in superficie.

LW trienni	o 2022-2024							
Codice	Ccorpo idrico	Pr	Stato CHIMICO	Parametri critici Tab1A	Parame	etri critici Tab1B	Stato LTLeco	Ipam/nitmet Fitoplancton
MAS-051	Lago Accesa	GR	В		SF	arsenico	SF	
MAS-063	invaso di Montedoglio	AR	В		В		SF	
MAS-087	lago s. luce	PI	NB	nichel	В		SF	
MAS-103	invaso Penna	AR	В		SF	acido aminometilfosfonico (ampa)	SF	
MAS-104	invaso Levane	AR	В		SF	acido aminometilfosfonico (ampa)	SF	
MAS-114	Lago Montepulciano	SI	В		В		SF	
MAS-115	Lago Chiusi	SI	NB	benzo [a] pirene	В		SF	scarso (anno 2023)
MAS-122	Invaso Bilancino	FL	В		В		SF	buono (anno 2022)
MAS-600	invaso Bicocchi	GR	nd		Е		SF	
MAS-603	lago del Calcione	SI	В		В		SF	
MAS-605	lago Isola	FI	В		В		SF	
MAS-606	bacino la Calvanella	FI	В		В		SF	buono (anno 2023)
MAS-607	lago Migneto	FI	В		В		SF	,
MAS-608	lago Fabbrica 1	FI	В		SF	dimetomorf	SF	
MAS-609	lago Chiostrini	FI	В		В		SF	
MAS-610	invaso Orcia-Astrone	SI	В		В		SF	
MAS-611	bacino Elvella	SI	В		В		SF	
MAS-613	le Scaglie	AR	В		В		SF	
MAS-614	Invaso Finestrelle	AR	В		В		SF	
MAS-615	bacino della Giudea	PT	В		В		SF	
MAS-616	bacino due forre	PT	NB	mercurio	В		SF	
MAS-617	bacino Falchereto	PT	В		SF	acido aminometilfosfonico (ampa)	SF	
MAS-619	lago di San Cipriano	AR	В		В		SF	
MAS-620	lago orma del diavolo cammenata	AR	В		В		SF	
MAS-621	Montachello Bagnolo	РО	В		В		SF	
MAS-650	Lago Massaciuccoli	LU	NB	benzo [a] pirene, di(2-etilesil), mercurio, nichel, piombo	В		SF	sufficiente

Lo stato ecologico, derivando dal peggior risultato degli indici da cui è composto, risulta sempre sufficiente con eccezione di Chiuso, che risulta scarso. Considerata però la scarsità di dati è un indicatore poco robusto. Lo stato chimico ha una robustezza maggiore e risulta buono nella maggior parte dei corpi idrici, mentre non buono è il lago di Chiusi (benzo[a]pirene con concentrazione media di 6,5 ng/l superiore al limite previsto), Santa Lucia (nichel media 5.4 ug/l supera il limite normativo), Due Forre (mercurio in due campioni supera la concentrazione massima ammissibile, per questo parametro non è previsto il limite di concentrazione medio) e Massaciuccoli (benzo[a]pirene, e metalli.

10 - Acque di transizione

La rete di monitoraggio delle acque di transizione conta 12 punti su altrettanti corpi idrici, comprendenti le foci dei principiali fiumi della regione e lagune costiere con le caratteristiche tipiche delle zone umide; infatti, alcune zone rientrano nella convenzione di Ramsar.

Si tratta di zone caratterizzate da acque salmastre. Si tratta quindi di ecotoni, in cui gli indici biologici applicati sono quelli mutuati dal monitoraggio marino e non fluviale. Le zone interne quali lago di Burano, Diaccia Botrona, laguna di Orbetello, hanno comunque caratteristiche di zone umide, ragion per cui il biomonitoraggio è difficilmente applicabile perché non si adattano perfettamente né i bioindicatori delle acque marine né quelli delle acque fluviali.

Nelle foci fluviali è spesso difficoltoso campionare in sicurezza gli indici biologici, in quanto, oltre al mezzo nautico adeguato, sono necessari altri accorgimenti e tecniche di difficile disponibilità.

Lo stato ecologico non comprende gli indici biologici a causa delle difficoltà di campionamento in aree di foce o in zone umide, spesso in secca. Lo stato chimico è declinato nelle tre matrici: acqua, sedimento e biota.

Le norme di riferimento per valutare lo stato ecologico e chimico dei corpi idrici sono il DM 260/10, il D.lgs. 152/06 e successive modifiche. In tabella 1/A dell'allegato 1 alla parte III del D.lgs. 152/06 sono elencate le sostanze pericolose la cui elaborazione restituisce la qualità chimica, mentre le sostanze elencate nella tabella 1B dello stesso allegato sono richieste nell'elaborazione dello stato ecologico.

Le zone umide risentono sempre più spesso di periodi di siccità che compromettono la sopravvivenza di organismi animali e vegetali; quindi, la tipologia di indagine prevista per l'analisi della componente biologica animale e vegetale, dovrebbe tenere in ragionevole dubbio la possibilità di campionare

organismi che non rappresentano adeguatamente la colonizzazione rispetto al numero di specie presenti e struttura in taxa delle comunità, a causa dei periodi con assenza di acqua.

Lo stato ecologico viene attribuito dal risultato peggiore tra lo stato trofico e le concentrazioni medie delle sostanze pericolose in acqua e nei sedimenti. Non essendo disponibili gli indicatori biologici, viene elaborato uno stato ecologico 'meno robusto'.

	Stato ecologico acque di transizione triennio 2022 - 2024									
Corpo idrico	Comune	Prov	Codice	Stato ecologico 2022-2024	Stato trofico (*)	Sostanze pericolose tab	Superi sostanze pericolose tab 1B			
FIUME SERCHIO FOCE	SAN GIULIANO TERME	PI	MAS-007	sufficiente	sufficiente	buono				
FIUME OMBRONE FOCE	GROSSETO	GR	MAS-037	sufficiente	sufficiente	sufficiente	ampa, glifosato			
FIUME BRUNA FOCE	CASTIGLIONE DELLA PESCAIA	GR	MAS-050	sufficiente	sufficiente	buono				
DIACCIA BOTRONA	CASTIGLIONE DELLA PESCAIA	GR	MAS-052	sufficiente	sufficiente	buono				
LAGO DI BURANO	CAPALBIO	GR	MAS-057	sufficiente	sufficiente	sufficiente	arsenico			
FIUME CORNIA VALLE	PIOMBINO	LI	MAS-079	sufficiente	no dati	buono				
LAGUNA DI ORBETELLO - LEVANTE	ORBETELLO	GR	MAS-088	sufficiente	sufficiente	buono				
LAGUNA DI ORBETELLO - PONENTE	ORBETELLO	GR	MAS-089	sufficiente	sufficiente	buono				
FIUME ARNO FOCE	PISA	PI	MAS-111	sufficiente	sufficiente	buono				
CANALE BURLAMACCA	VIAREGGIO	LU	MAS-014	buono	Lim elevato	buono				
				(*) approssii	mato per mancanz	za di alcuni parametri				

La qualità ecologica determinata in assenza di bioindicatori risulta sufficiente sul complesso dei punti monitorati. Tale dato è influenzato dallo stato trofico, risultato sempre in zona sufficiente. Tra le sostanze chimiche che entrato nell'algoritmo dello stato ecologico, quelle risultate con medie del triennio superiore allo standard, sono l'arsenico a Burano e i pesticidi ampa e glifosato alla foce dell'Ombrone.

Stato chimico 2022-2024- matrice acque di transizione									
Corpo idrico	Comune	Prov	Codice	Stato chimico	Superi di sostanze pericolose tab 1A				
FIUME SERCHIO FOCE	SAN GIULIANO TERME	PI	MAS-007	Non buono	Pfos, benzo[a]pirene, piombo				
FIUME OMBRONE FOCE	GROSSETO	GR	MAS-037	Non buono	Pfos,piombo				
FIUME BRUNA FOCE	CASTIGLIONE DELLA PESCAIA	GR	MAS-050	Non buono	cadmio				
DIACCIA BOTRONA	CASTIGLIONE DELLA PESCAIA	GR	MAS-052	Buono					
LAGO DI BURANO	CAPALBIO	GR	MAS-057	Non buono	piombo				
FIUME CORNIA VALLE	PIOMBINO	LI	MAS-079	Non buono	nichel				
LAGUNA DI ORBETELLO - LEVANTE	ORBETELLO	GR	MAS-088	Non buono	Pfos,piombo				
LAGUNA DI ORBETELLO - PONENTE	ORBETELLO	GR	MAS-089	Non buono	pfos				
FIUME ARNO FOCE	PISA	PI	MAS-111	Non buono	Pfos,piombo				
CANALE BURLAMACCA	VIAREGGIO	LU	MAS-014	Non buono	Pfos,benzo[a]pirene,cibutrina, mercurio,tributilstagno				

Lo stato chimico prevede due livelli di qualità: buono o non buono. Qualità non buona risulta quando la concentrazione media del periodo di un solo parametro supera lo SQA.

Per alcuni parametri è previsto il confronto con la CMA - concentrazione massima ammissibile, per cui, laddove una sola determinazione supera il valore di CMA, al corpo idrico in oggetto viene attribuito uno stato chimico non buono.

Nel triennio in esame lo stato chimico elaborato sulla matrice acqua risulta sempre non buono salvo la Diaccia Botrona. I parametri critici risultano essere alcuni metalli come nichel e piombo e il pfos – acido perfluoroottansolfonico.

Stato qualità biota										
Corpo idrico	Prov	Codice		Parametri critici	Anno prelievo	Pesce				
FIUME SERCHIO FOCE	PI	MAS-007	Non Buono	mercurio	2023	Liza Ramada (cefalo calamita)				
FIUME OMBRONE FOCE	GR	MAS-037								
FIUME BRUNA FOCE	GR	MAS-050								
DIACCIA BOTRONA	GR	MAS-052	Non previsto							
LAGO DI BURANO	GR	MAS-057								
FIUME CORNIA VALLE	LI	MAS-079								
LAGUNA ORBETELLO - LEVANTE	GR	MAS-088	Non Buono	mercurio	2023-2024	Liza Ramada (cefalo calamita)				
LAGUNA D ORBETELLO - PONENTE	GR	MAS-089	Non Buono	mercurio	2023-2024	Liza Ramada (cefalo calamita)				
FIUME ARNO FOCE	PI	MAS-111	Non Buono	mercurio	2023-2024	Liza Ramada (cefalo calamita)				

È preferibile tenere separate le elaborazioni relative al biota e ai sedimenti. Queste matrici, infatti, non sono monitorate su tutti i punti.

Per quanto riguarda le analisi sul biota, tutti i punti monitorati riportano stato di qualità non buono per superamento del limite normativo del mercurio.

Qualità sedimenti acque di transizione periodo 2022-2024									
Corpo idrico	Comune	Prov	Codice	Sedimenti tab 2A e tab 3A	superi parametri sedimenti				
FIUME SERCHIO FOCE	SAN GIULIANO TERME	PI	MAS-007	Non previsto					
FIUME OMBRONE FOCE	GROSSETO	GR	MAS-037	Buono					
FIUME BRUNA FOCE	CASTIGLIONE DELLA PESCAIA	GR	MAS-050	Non buono	DDT ,Esaclorobenzene				
DIACCIA BOTRONA	CASTIGLIONE DELLA PESCAIA	GR	MAS-052	Non buono	Esaclorobenzene				
LAGO DI BURANO	CAPALBIO	GR	MAS-057	Non buono	piombo				
FIUME CORNIA VALLE	PIOMBINO	LI	MAS-079	Non previsto					
LAGUNA DI ORBETELLO - LEVANTE	ORBETELLO	GR	MAS-088	Non buono	DDT, DDE, DDD, mercurio, piombo				
LAGUNA DI ORBETELLO - PONENTE	ORBETELLO	GR	MAS-089	Non buono	DDD,DDE,cadmio, mercurio, piombo				
FIUME ARNO FOCE	PISA	PI	MAS-111	Non previsto					

L'analisi dei sedimenti riporta una qualità buona alla foce dell'Ombrone e non buona sugli altri punti analizzati.

Conclusioni

La frequenza di validità dei piani di Gestione delle acque è sessennale, con una distribuzione dei punti di campionamento nel triennio. Il triennio 2022-2024 apre il nuovo sessennio e potrà aggiornare sia il Piano di gestione redatto a cura del Distretto idrografico Appennino settentrionale, che il Piano di Tutela redatto a cura della Regione.

La classificazione dei singoli corpi idrici, su cui insiste un'unica stazione di campionamento rappresentativa di tutto il corso d'acqua, è declinata nello stato ecologico (formato da 5 indici biologici e chimici) e stato chimico, dato dalla elaborazione delle analisi sui parametri di tabella 1A All. 1 - Parte III - D. Lgs. 152/06.

A livello regionale l'obiettivo di qualità ecologica buona è raggiunto nel 30% dei corpi idrici, mentre la qualità ecologica elevata risulta assente. La qualità chimica è buona nel 55% dei punti monitorati. Entrambi gli stati di qualità registrano un peggioramento in termini percentuali rispetto al triennio precedente (nel 2019-2021 lo stato ecologico risultava: 41% buono e 2% elevato; sempre nello stesso periodo lo stato ecologico risultava nel 60% buono).

Per quanto riguarda i laghi e le acque di transizione, lo stato ecologico è "meno robusto", in ragione delle difficoltà incontrare nell'applicazione di indici biologi e stato trofico.

La qualità ecologica e chimica si riferisce all'elaborazione dei dati campionati sulla matrice acqua. Gli indici idromorfologici sui corsi d'acqua, le analisi relative al bioaccumulo nel biota pescato in acque superficiali e di transizione nonché la struttura della comunità ittica in corsi d'acqua guadabili, sono trattati a sé stanti, considerati ancora come indici sperimentali, con un numero di dati significativamente inferiore a quelli determinati su matrice acqua.

Nel corso del 2024 sono stati rivisti tutti gli accessi ai luoghi di monitoraggio su fiumi, torrenti e canali e la DGRT 1589/2024 riporta la sintesi dei cambiamenti resesi necessari e l'elenco con le coordinate aggiornate dei punti di monitoraggio su acque correnti; restano da revisionare le postazioni su laghi e in parte le acque di transizione. Tale revisione ha comportato anche una modifica nei set analitici, individualizzando quindi corpi idrici sui quali dal 2025 in poi sarà possibile effettuare solo il campione chimico, in quanto non guadabili o con accessi troppi ripidi e quindi non in sicurezza per gli operatori.

Allegato 1 - Classificazione sottobacini

BACINO ARNO

Arno asta principa	Arno asta principale												
Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico		
Arno Sorgenti	AR	MAS-100	В	no dati	no dati	no dati	E	В		В			
Arno Casentinese	AR	MAS-101	SF	В	В	no dati	E	SF	ampa	В			
Arno Aretino	AR	MAS-102	SF	SF	Е	SF	В	SF	ampa	В			
Arno Fiorentino	FI	MAS-503	sc	SC	Е	SF	В	SF	ampa	В			
Arno Valdarno Superiore	FI	MAS-106	sc	SC	E	SC	SF	В		В			
Arno Valdarno Inferiore Capraia e Limite	FI	MAS-108	sc	SC	E	SC	SC	В		NB	pfos		
Arno Valdarno Inferiore Fucecchio	FI	MAS-109	SF assenzaBio	no dati	no dati	no dati	SF	В		NB	pfos, cipermetrina		
Arno Pisano	PI	MAS-110	sc	SC	В	no dati	SF	В		NB	pfos, benzo [a] pirene, mercurio, nichel		
Arno foce	PI	MAS-111	tw	tw	tw	tw	tw	tw		tw			

Asta principale dell'Arno conserva qualità buona alle sorgenti, procedendo verso valle passa da sufficiente nel tratto casentinese e aretino e diventa scarso dal Valdarno al tratto pisano. Da sottolineare che il sufficiente alla zona Fucecchio deriva da un monitoraggio solo chimico, non sono disponibili bioindicatori per problemi di accesso all'alveo. Lo stato chimico è buono dalla sorgente al Valdarno superiore e poi costantemente non buono, per superamento di parametri come pfsos e metalli.

Corpi idrici non ricompresi in specifici sottobacini												
Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico	
Mugnone	FI	MAS-127	SC	SC	В	SF	SF	В		В		
Chiecina	PI	MAS-519	B assenzaBio	no dati	no dati	no dati	E	В		В		
Chiesimone	FI	MAS-2024	В	В	E	E	В	В		NB	pfos	
Ciuffenna	AR	MAS-522	SF	SF	В	Е	В	В		В		

Corpi idrici non ricompresi in specifici sottobacini												
Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico	
Del Cesto	FI	MAS-971	SF	В	E	SF	E	В		В		
Resco	FI	MAS-922	В	E	E	E	E	В		В		
Salutio	AR	MAS-949	SF	В	E	E	E	SF	ddt totale, esaclorobenze ne (hcb)	В		
Trove(2)	AR	MAS-870	В	В	E	E	В	В		В		
Vicano Di Pelago	FI	MAS-520	SF	SF	В	SF	E	В		В		

I corsi d'acqua elencati nella tabella sopra, riportano una qualità equamente divisa tra stato ecologico buono e sufficiente, con un peggioramento sul Mugnone dov'è scarsa. Dal punto di vista chimico solo un superamento del limite del pfos sul Chiesimone.

AFFLUENTI ARNO IN DESTRA IDROGRAFICA

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
	(Dinta) Fiumenta	РО	MAS-972	SF	В	E	SF	В	В		NB	mercurio
	Bisenzio Monte	РО	MAS-552	SF	SF	E	В	E	В		NB	mercurio
Arno-Bisenzio	Bisenzio Medio	РО	MAS-125	SC	sc	В	SF	В	SF	ampa	NB	pfos, mercurio
Arno-Bisenzio	Bisenzio Valle	FI	MAS-126	SC	sc	В	SC	SF	В		NB	pfos
	Fosso Reale (2)	FI	MAS-541	SC	sc	В	SC	В	В		В	
	Marina Valle	FI	MAS-535	SF	SF	Е	SF	Е	В		В	
	Brana	PT	MAS-512	SC	SC	SC	SF	SC	SF	ampa, glifosate, imidacloprid	NB	pfos, mercurio
	Bure Di San Moro	PT	MAS-842	В	В	В	В	E	В		В	
Arno-Ombrone Pt	Ombrone_Pt Monte	PT	MAS-128	В	В	E	Е	E	В		В	
	Ombrone_Pt Medio	PT	MAS-129	SC	sc	SF	С	SC	SF	ampa, glifosate	NB	pfos, mercurio
	Ombrone_Pt Valle	РО	MAS-130	SC	SC	SC	SC	C (*)	SF	ampa, dimetomorf, glifosate	NB	pfos, mercurio
	Vincio Brandeglio	PT	MAS-991	В	E	E	Е	В	В		NB	mercurio

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
	Botena	FI	MAS-854	В	В	E	В	Е	E		В	
	Carza	FI	MAS-943	SF	В	Е	SF	Е	В		NB	mercurio
	Elsa (2)	FI	MAS-504	В	В	В	Е	Е	В		В	
	Fistona	FI	MAS-916	SF	Е	Е	SF	Е	В		В	
Arno-Sieve	Levisone	FI	MAS-505	SF	SF	E	SF	В	В		В	
	Sieve Monte Bilancino	FI	MAS-119	В	В	E	В	E	В		В	
	Sieve Medio	FI	MAS-120	В	В	E	В	Е	В		В	
	Sieve Valle	FI	MAS-121	SF	SF	В	SF	В	В		В	
	Stura	FI	MAS-118	В	Е	Е	Е	Е	В		В	
	Cessana	PT	MAS- 510A	SC	SC	SC	SF	C (*)	SF	ampa, glifosate	NB	pfos, mercurio
	Emissario Bientina	PI	MAS-148	SC (°)	no dati	no dati	no dati	SC	В		NB	pfos, benzo [a] pirene
	Nievole Monte	РТ	MAS-141	В	В	E	E	В	В		В	
	Nievole Valle	PT	MAS-142	SF	SF	В	В	В	В		В	
Arno-Usciana	Pescia Di Collodi	LU	MAS-139	SF	SF	E	SF	E	В		NB	pfos, nichel
	Pescia Di Collodi	PT	MAS-140	SC	sc	В	SF	В	SF	ampa, glifosate	NB	pfos
	Pescia Di Pescia	PT	MAS- 2011	SC	sc	В	SC	SF	SF	ampa, glifosate	NB	pfos, mercurio
	Usciana-Del Terzo	PI	MAS-144	С	С	SC	С	SC	SF	ampa, glifosate	NB	pfos, mercurio
	Usciana-Del Terzo	PI	MAS-145	С	С	no dati	no dati	SC	SF	cromo totale	NB	pfos, mercurio, nichel

Si nota un visibile peggioramento dello stato ecologico rispetto al triennio precedente, infatti anche alcune postazioni in tratti a monte di corsi d'acqua, hanno qualità ecologica più bassa del buono. Si verifica sul Bisenzio i cui tratti oscillano tra qualità sufficiente e scarsa; il sottobacino Usciana riporta un unico punto – Nievole monte in buon stato ecologico (il triennio precedente risultavo l'unico punto della Toscana in stato elevato), il resto dei punti sufficiente, scarso o cattivo i due punti sull'Usciana del Terzo. Un po' meglio lo stato ecologico sul sottobacino della Sieve con almeno le postazioni a monte e medio Sieve mantengono lo stato buono.

Dal punto di visto dello stato chimico si consolida una situazione abbastanza impattata con 16 corpi idrici in stato non buono (stessa frequenza del triennio precedente) tra cui anche tratti a monte come

il Bisenzio. I parametri responsabili più frequentemente dello scadimento sono mercurio e PFOS. Nel corso del triennio su dieci corpi idrici è stato prelevato un campione di pesce target ossia specifico del tratto in esame ed analizzato per lo studio del bioaccumulo; in tutti si è riscontata la presenza di sostanze pericolose quali difenileteri bromurati e mercurio. I corpi idrici in oggetto sono: Fiumenta, Brana, Bure di Santo Moro, Ombrone pistoiese tratto a monte e tratto medio, Vincio di Brandeglio, Levisone, Sieve tratto a monte, Nievole tratto a monte e Pescia di Collodi.

AFFLUENTI ARNO IN SINISTRA IDROGRAFICA

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
	Canale Rogio	PI	MAS-146	SC (°)	no dati	no dati	no dati	SC	В		NB	pfos, benzo [a] pirene
	Rio Ponticelli- Delle Lame	PI	MAS-524	SC (°)	no dati	no dati	no dati	SC	В		NB	pfos, mercurio, nichel
Arno- Bientina	Crespina	PI	MAS- 2006	B (°)	no dati	no dati	no dati	В	В		В	
	Fossa Chiara	PI	MAS- 2005	SC (°)	no dati	no dati	no dati	SC	SF	clortoluron	NB	pfos, mercurio, nichel
	Tora	LI	MAS-150	B (°)	no dati	no dati	no dati	В	В		NB	nichel
	Archiano	AR	MAS-941	В	Е	Е	E	В	В		В	
Arno- Casentino	Solano	AR	MAS-954	В	Е	Е	E	Е	В		В	
	Staggia (2)	AR	MAS-927	В	Е	Е	E	Е	В		В	
	Allacciante Rii Castiglionesi	AR	MAS-513	SC (°)	no dati	no dati	no dati	SC	SF	ampa	В	
	Ambra	AR	MAS-521	SC	SC	SF	SF	В	SF	ampa	В	
	Esse	AR	MAS- 2007	SF (°)	no dati	no dati	no dati	SF	SF	ampa, clortoluron, glifosate	NB	mercurio, nichel
	Foenna Monte	SI	MAS-117	В	В	Е	E	E	В		В	
Arno-Chiana	Foenna Valle	SI	MAS-116	SF	no dati	no dati	no dati	SF	SF	ampa	В	
	Maestro Della Chiana	AR	MAS-112	SC	SC	no dati	no dati	SC	SF	ampa	В	
	Maestro Della Chiana	AR	MAS-113	SF	no dati	no dati	no dati	SF	SF	ampa	NB	pfos
	Mucchia	AR	MAS- 2008	B (°)	no dati	no dati	no dati	В	В		В	
	Parce	SI	MAS-514	SF	SF	SF	E	SF	SF	ampa	NB	pfos
Ama FI-	Egola Monte	PI	MAS-553	SF	В	Е	SF	Е	В		NB	pfos
Arno-Egola	Egola Valle	PI	MAS-542	SC	SC	В	SF	В	В		В	

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
	Elsa Medio superiore	SI	MAS-874	SF	SF	Е	SF	В	В		В	
	Elsa Valle superiore	SI	MAS-134	SF	SF	В	E	SC (*)	SF	ampa, glifosate	В	
	Elsa valle inferiore	PI	MAS-135	SF (°)	no dati	no dati	no dati	SF	SF	ampa, dimetomorf, glifosate	NB	pfos, mercurio
Arno-Elsa	Pesciola(2)	AR	MAS- 2012	SF	SF	E	no dati	SF	В		NB	pfos, mercurio
	Scolmatore-Rio Pietroso	FI	MAS-509	SF	SF	E	E	В	В		NB	pfos, mercurio
	Staggia	SI	MAS- 2013	SC	SC	В	SF	SF	SF	ampa	NB	pfos
	Torrente Foci	SI	MAS- 928A	SF	В	В	В	SF	SF	ampa	В	
	Era Monte	PI	MAS-137	В	В	В	no dati	В	В		В	
	Era Medio	PI	MAS-537	SF	SF	Е	В	Е	В		В	
	Era Valle	PI	MAS-138	С	no dati	no dati	С	no dati	В		В	
Arno-Era	Garfalo	PI	MAS-507	В	В	no dati	no dati	E	В		NB	mercurio
	Roglio	PI	MAS-538	SF (°)	no dati	no dati	no dati	SF	В		NB	mercurio, nichel
	Sterza (2) Valle	PI	MAS-955	SC	SC	Е	В	Е	В		NB	mercurio
	Greve Monte	FI	MAS-536	SF	SF	Е	SF	Е	В		В	
Arno-Greve	Greve Valle	FI	MAS-123	SC	SC	Е	SF	SC	SF	imidacloprid	NB	pfos
	Orme	FI	MAS-518	SC	SC	В	SC	SF	В		NB	pfos, mercurio
Arno-Pesa	Pesa Monte	FI	MAS-131	SF	SF	Е	E	E	В		В	
	Pesa Valle	FI	MAS-517	SF	SF	E	SF	В	В		В	

Gli affluenti in sinistra idrografica dell'Arno risultano più impattati sia sul piano ecologico che chimico, d'altra parte sono corsi d'acqua che scorrono in ambienti ancora più antropizzati. Il sotto raggruppamento Arno-Casentino mantiene una qualità ecologica buona, per il resto predominanza di stati sufficiente e scarso.

I parametri di tabella 1B, responsabili dello stato sufficiente, sono fitofarmaci in massima parte ampa e glifosato e sporadici altri principi attivi di pesticidi.

Sul piano chimico una lieve predominanza di stato buono; i superamenti più frequenti che determinano lo stato chimico non buono sono mercurio e PFOS.

Complessivamente nel bacino dell'Arno la percentuale di corpi idrici che ha raggiunto l'obiettivo

dettato dalla Direttiva Europea di stato ecologico buono è il 27% contro il 73% di stato ecologico inferiore – nessun punto di monitoraggio riporta una qualità ecologica elevata.

Lo stato chimico risulta buono per il 56% contro il 44 % dei punti, con superamento dei limiti normativi per alcune sostanze pericolose.

BACINO OMBRONE GROSSETANO

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
	Albegna Monte	GR	MAS-054	В	В	Е	E	E	В		NB	piombo
	Albegna Medio	GR	MAS-055	SF	SF	Е	Е	SF	SF	arsenico	В	
	Albegna Valle	GR	MAS-056	SF	SF	Е	E	SF	В		NB	nichel
Albogna	Elsa	GR	MAS-543	SF	SF	В	SF	SF	В		В	
Albegna	Fosso Gattaia	GR	MAS-2001	SF	SF	SF	SF	SC (*)	В		В	
	Fosso Sanguinaio	GR	MAS-544	В	В	В	no dati	В	В		В	
	Osa Monte	GR	MAS-053	SF	SF	В	SF	В	В		В	
	Patrignone	GR	MAS-2002	SF	SF	В	SF	Е	В		В	
	Arbia Monte	SI	MAS-038	В	В	Е	E	E	В		В	
	Arbia Valle	SI	MAS-039	SC (°)	no dati	no dati	no dati	SC	SF	ampa, glifosate	В	
Arbia	Bozzone	SI	MAS-531	SF	SF	В	В	SF	SF	ampa	В	
Albia	Piana	SI	MAS-921	SF	В	Е	В	E	SF	ampa	В	
	Stile	SI	MAS-533	SF	SF	В	В	В	В		В	
	Tressa	SI	MAS-2003	SC	SC	В	SF	SC	SF	ampa	NB	pfos
	Bruna Monte	GR	MAS-048	SF	SF	E	В	В	В		NB	cadmio, nichel
	Bruna Medio	GR	MAS-049	SF	SF	E	SC	В	В		NB	cadmio, mercurio, nichel
	Bruna foce	GR	MAS-050	tw	tw	tw	tw	tw	tw		tw	
Bruna	Carsia	GR	MAS-545	SF	SF	E	SF	В	В		NB	mercurio
	Follonica	GR	MAS-2014	SC	SC	SC	SF	SC	SF	ampa, glifosate	NB	mercurio
	Fossa	GR	MAS-2015	SC	SC	В	SF	В	SF	ampa	В	
	Sovata	GR	MAS-456	SC	SC	В	SF	В	SF	ampa	NB	nichel
Croton	Gretano	GR	MAS-045	SF	SF	Е	E	E	В		В	
Gretano	Lanzo	GR	MAS-888	SF	SF	Е	E	E	В		В	
Marian	Farma	SI	MAS-042	SF	SF	Е	E	В	В		В	
Merse	Feccia	SI	MAS-993	В	В	Е	Е	В	В		В	

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
	Fosso Serpenna	SI	MAS-882	SC (°)	no dati	no dati	no dati	SC	SF	ampa, glifosate	NB	pfos
	Lagonna	SI	MAS-976	В	В	E	E	В	В		В	
	Merse	SI	MAS-040	SF	SF	Е	no dati	E	В		NB	cadmio
	Merse	SI	MAS-041	SF	В	Е	Е	В	SF	ampa	В	
	Rosia	SI	MAS-532	SF	В	E	В	В	SF	ampa	В	
	Chiusella	SI	MAS-914	SF	Е	SF	SF	E	SF	ampa	В	
	Emissario S. Rocco	GR	MAS-548	SF (°)	no dati	no dati	no dati	SF	SF	ampa, pesticidi totali	NB	pfos
	Fosso Scheggiola	SI	MAS-938	SF	SF	Е	no dati	E	В		В	
	Melacciole	GR	MAS-046	SF	SF	Е	SC	E	В		В	
	Ombrone Senese	SI	MAS-031	SC	SC	В	В	E	SF	ampa	В	
Ombrone_O mbrone	Ombrone Senese	SI	MAS-032	SF	SF	В	no dati	E	SF	ampa	В	
	Ombrone Grossetano	GR	MAS-034	SF	В	E	SF	В	SF	ampa	NB	benzo [a] pirene, piombo, tributilstagn o
	Ombrone Grossetano valle	GR	MAS-036	SF	SF	E	В	E	SF	ampa	NB	tributilstagn o
	Ombrone foce	GR	MAS-037	tw	tw	tw	tw	tw	tw		tw	
Orbetello-	Fosso Del Chiarone	GR	MAS-2019	SF	SF	В	В	В	В		NB	cadmio
Burano	Fosso Del Melone Monte	GR	MAS-547	SF (°)	no dati	no dati	no dati	SF	SF	ampa	В	
	Asso	SI	MAS-534	C (°)	no dati	no dati	no dati	С	SF	ampa, glifosate	В	
	Ente	GR	MAS-887	SF	В	E	В	E	SF	ampa	В	
	Onzola	SI	MAS-549	SF	SF	В	no dati	E	В		В	
	Orcia Monte	SI	MAS-043	SF	SF	Е	Е	В	SF	ampa	NB	esaclorobuta diene
	Orcia Valle	SI	MAS-044	SF	SF	E	Е	В	SF	ampa	В	
Orcia	Ribusieri	GR	MAS-550	SF	SF	E	no dati	В	В		В	
	Sucenna	SI	MAS-956	B (°)	no dati	no dati	no dati	E	В		NB	pfos, mercurio
	Trasubbie	GR	MAS-047	SF	SF	Е	E	E	В		NB	cadmio
	Tuoma	SI	MAS-2020	SF (°)	no dati	no dati	no dati	SF	SF	ampa	В	
	Vivo	GR	MAS-864	SF	В	В	В	E	SF	ampa	В	

Asta principale dell'Ombrone grossetano presenta una qualità ecologica in peggioramento rispetto al triennio precedente, in quanto risulta sempre sufficiente con uno scarso nel tratto senese. Gli indici determinanti risultano la comunità di macroinvertebrati e la presenza di residui di ampa.

Lo stato chimico riporta presenza di metalli di tributilstagno.

Per il sottobacino Albegna lo stato ecologico risulta buono nel tratto a monte e al fosso Sanguinaio, il resto dei punti di monitoraggio riportano stato ecologico sufficiente. Relativamente allo stato chimico predominano i punti con assenza di sostanze pericolose oltre i limiti nominativi

Nel sottobacino Arbia solo il tratto a monte è di qualità ecologica buona, il resto dei corpi idrici è sufficiente o scarso, come il tratto a valle, dove mancano i bioindicatori. Buono lo stato chimico ad eccezione del torrente Tressa, con presenza di residui di pfos.

Nel sottobacino del Bruna persistono condizioni di criticità: in due punti, compreso il tratto a monte, la qualità chimica non è buona, per superamento di metalli, stato ecologico sufficiente.

Nel Gretano e nel Lanzo è buono lo stato chimico ma sempre sufficiente l'ecologico.

In peggioramento rispetto al triennio precedente anche i sottobacini del Merse e dell'Orcia con cinque corpi idrici in stato chimico non buono e la prevalenza di stato ecologico sufficiente, con presenza di residui del fitofarmaco.

Complessivamente nel bacino del Ombrone grossetano la percentuale di corpi idrici che ha raggiunto l'obiettivo dettato dalla Direttiva Europea di stato ecologico buono è il 12%, in drastica riduzione rispetto al triennio precedente che era del 46%.

Lo stato chimico è buono nel 65% dei corpi idrici contro l'86% del triennio precedente.

BACINO TOSCANA COSTA

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
	Botro Grande	PI	MAS-075	С	SC	SF	С	В	В		NB	mercurio
	Botro S Marta	ΡI	MAS-074	SC	SC	no dati	no dati	SF	SF	arsenico	NB	fluorantene, mercurio, nichel
	Cecina Monte	SI	MAS-068	В	В	E	E	Е	В		В	
	Cecina Medio	PI	MAS-070	SF	SF	E	SF	В	В		NB	benzo [a] pirene, mercurio
	Cecina Valle	LI	MAS-071	В	no dati	no dati	В	В	В		NB	nichel
	Fossa Camilla	LI	MAS-527	В (°)	no dati	no dati	no dati	В	В		NB	pfos, nichel
Cecina	Fosso Bolgheri	LI	MAS-2025	SF	SF	Е	E	no dati	SF	boscalid, carbendazim, imidacloprid	NB	pfos, nichel
	Lebotra	PI	MAS-918	SF	SF	no dati	no dati	В	В		NB	nichel
	Pavone	PI	MAS-072	SF	SF	Е	SF	E	В		В	
	Possera Monte	PI	MAS-528	SF	В	Е	SF	E	В		NB	nichel
	Possera Valle	PI	MAS-073	SF	SF	В	В	E	SF	arsenico	NB	nichel
	Sellate – monte	PI	MAS-983	SF	SF	Е	E	E	В		В	
	Sterza Valle	PI	MAS-076	SF	SF	Е	E	E	В		В	
	Trossa Valle	PI	MAS-868	SF	SF	Е	no dati	E	В		NB	mercurio,
	Cornia Monte	GR	MAS-077	SF	SF	E	E	E	В		В	
	Cornia Medio	LI	MAS-078	В	В	Е	E	no dati	В		NB	nichel
Cornia	Cornia foce	LI	MAS-079	tw	tw	tw	tw	tw	tw		tw	
	Fosso Rio Merdanci o	LI	MAS-2016	no dati	no dati	no dati	no dati	no dati	no dati		no dati	verificato nessun dato
	Massera Valle	PI	MAS-081	SF	SF	E	В	E	В		NB	piombo

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
	Milia Valle	GR	MAS-080	В	В	Е	E	E	В		NB	mercurio
	Torrente Del Ritorto	GR	MAS-960	no dati	no dati	no dati	no dati	no dati	no dati		no dati	
	Chioma	LI	MAS-525	В	В	Е	В	E	В		NB	mercurio
Fine	Fine Valle	LI	MAS-086	SC	SC	В	SF	В	В		NB	nichel, tributilstagno (composti)
	Savalano	LI	MAS-526	SC	SC	В	SF	В	В		NB	nichel
	Allacciant e Di Scarlino	GR	MAS-529	SC	SC	SC	SF	В	SF	ampa	В	
Pecora	Pecora Monte	GR	MAS-530	SF	В	В	SF	Е	SF	arsenico	В	
	Pecora Valle	GR	MAS-085	SF	SF	E	В	E	SF	arsenico	NB	tributilstagno (composti)

(°) assenza bioindicatori

Nel bacino del Cecina è compromesso in modo significativo lo stato chimico, con superamento di metalli in 17 corpi idrici, rimangono buoni i tratti a monte del Cecina, Sellate, Sterza e Pecora.

Complessivamente la situazione nel bacino della Toscana Costa è critica, con una percentuale di corpi idrici che ha raggiunto l'obiettivo dato dalla Direttiva Europea di stato ecologico buono del 25% e stato chimico buono del 29%.

BACINO TOSCANA NORD

Sotto bacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico
Versilia	Camaiore-Luce	LU	MAS-539	SF	SF	E	SF	E	В	NB	nichel
Versilia	Canale Burlamacca	LU	MAS-014	tw	tw	tw	tw	E	В	NB	pfos, benzo [a] pirene, cibutrina, mercurio, tributilstagno
Versilia	Carrione Monte	MS	MAS-942	SC	SC	E	E	E	В	NB	benzo [a] pirene, mercurio
Versilia	Frigido-Secco	MS	MAS-025	В	В	E	no dati	В	В	NB	mercurio
Versilia	Serra (2)	LU	MAS-027	В	В	E	В	E	В	В	
Versilia	Versilia	LU	MAS-029	SC	SC	SC	В	В	В	NB	pfos, nichel
Versilia	Vezza	LU	MAS-028	В	В	E	В	E	В	NB	mercurio

Nel settore Toscana nord si mantiene una situazione critica soprattutto dal punto di vista chimico con il solo 14% dei punti in stato buono.

BACINO SERCHIO

Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico	Biota parametri critici
Serchio Monte	LU	MAS-001	SF	В	E	SF	E	SF	cromo totale	В		
Serchio Medio Superiore	LU	MAS-003	SF	SF	no dati	no dati	E	В		В		
Serchio Medio Inferiore	LU	MAS-004	В	В	Е	Е	В	В		NB	nichel	
Serchio Lucchese	LU	MAS-994	B (°)	no dati	no dati	no dati	E	В		NB	nichel	
Serchio foce	PI	MAS-007	tw	tw	tw	tw	tw	tw		tw		
Acquabianca Valle	LU	MAS-964	SF	В	E	SF	E	В		В		
Corfino	LU	MAS-969	SF	В	Е	SF	E	В		В		
Corsonna	LU	MAS-970	SF	В	Е	SF	no dati	В		NB	mercurio	
Edron	LU	MAS-973	В	В	Е	Е	Е	В		NB	mercurio	
Fegana	LU	MAS-974	В	В	Е	E	E	В		В		difeniletere bromurati totali, mercurio
Lima	LU	MAS-011	В	В	no dati	no dati	E	В		NB	mercurio, piombo	
Limestre	PT	MAS-2023	В	В	В	В	Е	В		NB	mercurio	
Ozzeri	LU	MAS-996	SC (°)	no dati	no dati	no dati	SC	В		NB	pfos, benzo [a] pirene, pentaclorob enzene	
Pedogna	LU	MAS-834	В	В	E	E	E	В		NB	mercurio, piombo	pfos, mercurio i
Pizzorna	LU	MAS-540	SF	SF	В	В	E	В		I NB	triclorometa no	
Rio Guappero	LU	MAS-995	SC	SC	В	В	E	В		NR	pfos, mercurio, nichel, piombo	mercurio e suoi composti
Scesta	LU	MAS-838	no dati	no dati	no dati	no dati	no dati	no dati		no dati	dati solo 2022 tutti <loq< td=""><td></td></loq<>	
Serchio Di Sillano	LU	MAS-818	В	В	no dati	В	E	В		В		
Sestaione	РТ	MAS-984	В	В	no dati	no dati	E	E		В		
Turrite Cava Valle	LU	MAS-832	SF	SF	Е	SF	E	В		В		
Turrite Di Gallicano	LU	MAS-557	SF	SF	В	SF	E	SF	arsenico	INB	benzo [a] pirene	

I primi due tratti del fiume Serchio riportano una qualità ecologica sufficiente e buona quella chimica, passando verso valle migliora la parte biologica mentre la qualità chimica riporta superamenti del valore limite del nichel.

Complessivamente nel bacino del Serchio la percentuale di corpi idrici che ha raggiunto l'obiettivo dettato dalla Direttiva Europea di stato ecologico buono è il 47%, in calo rispetto al triennio precedente. Le percentuali di stato chimico buona è del 42%, anche questa in lieve calo – era il 45% - rispetto al triennio precedente.

BACINI INTERREGIONALI

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico	Biota parametri critici
	Aulella Monte	MS	MAS-811	В	Е	Ε	E	Е	В		NB	nichel	
	Aulella Valle	MS	MAS-022	SF	SF	Е	SF	E	В		NB	mercurio, nichel	
	Magra Monte	MS	MAS-2018	SF	SF	E	В	E	В		В		difeniletere bromurati totali, mercurio
	Magra Medio	MS	MAS-016	SF	SF	Ε	В	Е	В		В		
	Magra Valle	MS	MAS-017	SF	SF	E	E	Е	В		NB	nichel	
	Bagnone (2)	MS	MAS-966	В	В	E	no dati	E	E		В		
Aulella- Magra	Bardine	MS	MAS-814	В	В	E	no dati	E	В		В		
	Caprio	MS	MAS-803	В	В	E	no dati	E	В		В		
	Geriola	MS	MAS-805	В	В	Е	no dati	E	В		NB	mercurio	
	Moriccio- Gordana	MS	MAS-019	SF	SF	Е	no dati	В	В		В		
	Rosaro	MS	MAS-813	SF	SF	Е	no dati	E	В		В		
	Taverone	MS	MAS-020	SF	SF	В	SF	E	В		NB	benzo [a] pirene	
	Verde	MS	MAS-015	В	В	E	E	В	В		В		
Conca	Marecchia Valle	AR	MAS-058	В	В	E	E	E	В		В		
	Presale	AR	MAS-891	В	В	Ε	E	Е	В		NB	pfos	
	Fiora	GR	MAS-091	SF	SF	E	no dati	E	В		NB	mercurio	
	Fiora	GR	MAS-093	SF	SF	E	Е	E	В		В		
Fiora	Fosso Del Cadone	GR	MAS-2017	SF	В	В	SF	E	В		NB	cadmio	
	Fosso Del Procchio	GR	MAS-501	SC	SC	В	no dati	SF	SF	ampa	В		mercurio
	Lente	GR	MAS-090	SF	SF	SF	E	В	SF	arsenico	NB	mercurio, tributilstagn o	
	Diaterna Valle	FI	MAS-850	В	В	E	E	E	В		В		
	Lamone Valle	FI	MAS-1000	SF	В	E	SF	Е	Е		В		
	Limentra Di Sambuca	PT	MAS-095	В	В	E	E	E	В		В		
Lamone- Reno	Reno Valle	PT	MAS-094	В	В	E	E	E	В		NB	mercurio	difeniletere bromurati totali, mercurio
	Rovigo	FI	MAS-849	В	В	E	В	Е	В		В		
	Santerno Valle	FI	MAS-096	В	В	E	E	E	В		В		difeniletere bromurati totali, mercurio

Sottobacino	Corpo idrico	Pr	Codice	Stato ecologico	МВ	D	MF	LimEco	Sostanze Tab1B	Parametri critici tab 1B	Stato chimico matrice Acqua tab 1A	Parametri critici Chimico	Biota parametri critici
	Senio Monte	FI	MAS-098	В	В	E	E	E	E		В		
	Tevere Sorgenti	AR	MAS-059	В (°)	no dati	no da ti	no dati	E	В		В		
	Tevere Monte	AR	MAS-060	В	В	Ε	В	E	В		В		
	Tevere Valle	AR	MAS-061	SF	SF	Ε	В	В	В		В		
	Astrone	SI	MAS-066	SF	SF	В	SF	SF	SF	ampa	В		
	Cerfone	AR	MAS-856	SF	SF	Ε	В	E	В		В		
Tevere	Colle Destro	AR	MAS-886	В	В	Ε	E	E	В		В		
	Paglia	SI	MAS-067A	SF	SF	E	E	В	В		NB	pfos, esaclorobut adiene	mercurio e suoi composti
	Singerna	AR	MAS-062	В	В	Ε	E	E	В		В		
	Sovara	AR	MAS-064	SF	В	Ε	SF	В	В		В		
	Stridolone	GR	MAS-2021	SF	SF	Ε	В	E	В		В		
	Tignana	AR	MAS-957	В	В	Ε	E	E	В		В		

Nel sottobacino del Magra la maggioranza dei corpi idrici è in stato chimico buono, quello ecologico presenta una prevalenza di stati sufficiente, tra cui l'intero tratto del Magra. Bacini del Conca e Lamone in buona qualità chimica ed ecologica. Sul Fiora in peggioramento lo stato chimico con solo due punti di qualità buona; come qualità ecologica prevale lo stato sufficiente.

Nella parte toscana del Tevere qualità chimica buona ad eccezione del Paglia; la qualità ecologica per un 50% è buona e la restante parte sufficiente.

Complessivamente nei bacini interregionali la percentuale di corpi idrici che ha raggiunto l'obiettivo dettato dalla Direttiva Europea di stato ecologico buono è il 50%, e per lo stato chimico buono il 71%: situazione nel complesso buona considerando che in regione toscana scorre il tratto montano di molti corpi idrici, comunque in lieve peggioramento rispetto al triennio precedente.

ARPAT, via del Ponte alle Mosse, 211 - 50144 Firenze
Tel. 055.32061 - Fax 055.3206324
urp@arpat.toscana.it

MONITORAGGIO E CLASSIFICAZIONE DELLA FAUNA ITTICA IN CORSI D'ACQUA DELLA TOSCANA

Applicazione dell'Indice NISECI

Relazione annuale

Dicembre 2024

Responsabile

Dott.ssa Annamaria Nocita

Sistema Museale di Ateneo, Museo di Storia Naturale, Sede La Specola

Assegnatari di Borsa di Ricerca

Dott. Thomas Busatto

Sistema Museale di Ateneo, Museo di Storia Naturale, Sede La Specola

Monitoraggio, elaborazione dati e redazione del presente report

Annamaria Nocita, Thomas Busatto

Fotografie

Annamaria Nocita, Marco Cruscanti, Paolo Ercolini

Il presente studio è stato finanziato in base alla convenzione, trasmessa il 14 dicembre 2023, tra Agenzia Regionale per la protezione ambientale della Toscana e Sistema Museale dell'Università degli Studi di Firenze "Monitoraggio e classificazione della fauna ittica", ai sensi dell'art. 15 della legge 7 agosto 1990, n. 241.

INDICE

INTRODUZION	E	4
MATERIALI E N	METODI	5
Aggiornamento	o professionale degli operatori ARPAT al Metodo NISECI	5
L'applicazione	dell'indice NISECI alle popolazioni ittiche presenti in Toscana	6
Le Comunità a	ttese e le specie ittiche presenti in Toscana	8
Note metodolo	giche per il monitoraggio	20
RISULTATI		23
Rilevamento co	omunità ittiche: stazioni e calendario	23
Stazione 1	Fiume Paglia: Ponte a Rigo	24
Stazione 2	Torrente Marmolaio: Pomaia	27
Stazione 3	Fiume Elsa: I Pianacci	30
Stazione 4	Torrente Pedogna: Pedogna	35
Stazione 5	Rio Guappero: Massa Pisana	38
Stazione 6	Torrente Ombrone: Ponte della Caserana	41
Stazione 7	Fosso del Procchio: Pitigliano	44
Stazione 8	Torrente Brana: Castelletto	47
Stazione 9	Torrente Salutio: Tulliano	51
Stazione 10	Torrente Fiumenta: Ponte per Luciana	54
Sintesi applica:	zione NISECI nel 2024	58
CONCLUSIONI		59
PROSECUZION	E DEI LAVORI	60
BIBLIOGRAFIA	DI RIFERIMENTO	62
Allegato 1: Classi	ificazione, taglia e densità ottimale per singola specie	63

INTRODUZIONE

L'Agenzia Regionale per la protezione ambientale della Toscana, ARPAT, attraverso le proprie Strutture dislocate in tutto il territorio regionale, garantisce l'attuazione degli indirizzi regionali nel campo della prevenzione e tutela ambientale, effettua il monitoraggio dello stato dell'ambiente e attraverso una rete di monitoraggio - MAS Monitoraggio Acque Superficiali - provvede all'applicazione di indici e indicatori previsti dalla normativa europea e nazionale ai fini della tutela ambientale. L'Agenzia, inoltre, avendo constatato la necessità di svolgere attività di ricerca sul tema della caratterizzazione della fauna ittica fluviale, ha ritenuto di avvalersi delle competenze tecniche e scientifiche di elevata qualificazione a livello nazionale, messe a disposizione dal Sistema Museale di Ateneo SMA.

Le attività che l'accordo di collaborazione scientifica tra ARPAT E e SMA ha previsto di realizzare sono:

- a) l'aggiornamento professionale degli operatori coinvolti nell'attuazione del nuovo metodo ISPRA NISECI e al monitoraggio della fauna ittica in alcuni corsi d'acqua del reticolo idrografico regionale;
- b) applicazione del nuovo indice dello stato ecologico NISECI come risultato della revisione e dell'aggiornamento dell'indice già individuato dal DM 260/2010, contribuendo a evidenziarne punti di forza ed eventuali prospettive di miglioramento e capacità di descrizione dello stato ecologico del fiume.

Tutte le attività sono svolte attraverso il coinvolgimento sia di ARPAT sia del personale del Sistema Museale di Ateneo come definito d'intesa tra le parti.

MATERIALI E METODI

Aggiornamento professionale degli operatori ARPAT al Metodo NISECI

L'11 e il 18 dicembre 2024 sono state organizzate delle giornate di formazione per il personale ARPAT, per un totale di 8 ore. L'aggiornamento del personale ARPAT, con circa 20 operatori presenti in aula, nel corso di queste lezioni ha permesso la maturazione di crediti formativi ECM nella misura di 11.2 crediti totali per gli operatori che hanno concluso il percorso formativo.

Nella prima delle due giornate di formazione sono state affrontate le principali tecniche tassonomiche riguardanti il riconoscimento degli esemplari di Pesci, utilizzando la microscopia ottica come principale strumento di lavoro, oltre ad aver richiamato le caratteristiche che permettono il riconoscimento delle specie negli individui *in vivo*, al fine sia di evitarne la soppressione sia di smistare rapidamente gli esemplari nel corso del monitoraggio su campo, diminuendo così la possibilità di errore nella determinazione dei diversi taxa.

Nella seconda giornata di lezione frontale è stata presentata l'applicazione del metodo NISECI nei 10 corsi d'acqua monitorati nel 2024 concentrando sulla raccolta dati sul campo, l'attenzione sulla scelta della comunità ittica di riferimento per l'area monitorata, l'elaborazione attraverso il foglio di calcolo predisposto da UNIFI. I risultati ottenuti sono stati analizzati e discussi insieme agli operatori. Le principali problematiche dell'algoritmo che restituisce il valore dell'indice sono state considerate alla luce del diverso peso dato alle tre metriche e alla relazione tra il risultato ottenuto e le diverse condizioni della popolazione ittiche trovate nelle stazioni monitorate. È stato infine possibile procedere a un esercizio di inserimento dati e elaborazione del giudizio di classe dello Stato Ecologico.

L'applicazione dell'indice NISECI alle popolazioni ittiche presenti in Toscana

Il Nuovo Indice di Stato Ecologico per la Comunità Ittica NISECI, che nella sua ultima formulazione (Macchio et al., 2017)è stato adattato alle richieste della WFD (EU Water Framework Directive - Directive 2000/60/EC of the European Parliament and of the Councile stablishing a framework for the Community action in the field of water policy)ed è stato individuato dalla normativa italiana come metodo ufficiale per la fauna ittica fluviale (D.M. 260/2010), è nato come ISECI (Zerunian, 2004; 2009) ovvero come un indice mirato a valutare la comunità ittica non solo per le funzioni ecosistemiche da essa svolte, ma anche dal punto di vista della naturalità, della coerenza ecologica e biogeografica.

Nel NISECI, il principale tra i criteri per la valutazione dello stato ecologico di un determinato corso d'acqua, è la completezza e coerenza della composizione in specie ittiche autoctone attese in relazione al quadro biozoogeografico ed ecologico, e la condizione biologica delle popolazioni presenti, quantificata positivamente per le specie indigene attese e negativamente per le aliene, in termini di abbondanza e struttura di popolazione tali da garantire la capacità di autoriprodursi ed avere normali dinamiche ecologico-evolutive. In riferimento a ciò, il manuale ISPRA descrive 9 Aree Zoogeografiche ecologiche, con le rispettive comunità ittiche di riferimento a livello nazionale, individuate basandosi sulla nomenclatura utilizzata da Zerunian (2004).

I criteri sopra descritti si collegano con le richieste della WFD, ribadite nelle relative norme di recepimento dell'Allegato 1 al decreto legislativo, le quali prevedono che, per la definizione dello stato ecologico dei corpi idrici fluviali, debba essere considerato l'EQB "fauna ittica", valutandone composizione, abbondanza e struttura di età (Macchio et al., 2017).

Tuttavia, è da tenere in debita considerazione che la nomenclatura della fauna ittica italiana, e più in generale europea, è stata molto modificata negli ultimi due decenni (Kottelatt&Freyhof, 2007), anche grazie a studi di genetica sulle popolazioni di pesci situati sui due versanti dell'Appennino, e quindi nei due principali distretti ittiogeografici dell'Italia, consentendo alcune distinzioni di genere e specie che non compaiono nel lavoro sopra citato (Zerunian2004).

Nel 2024 sono quindi state avviate le attività di campionamento ed elaborazione NISECI, in base a quanto previsto dall'art. 3 della sopracitata convenzione. Il piano ha previsto l'applicazione dell'Indice NISECI su 10 corsi d'acqua. L'attività di campionamento ha coinvolto gli operatori ARPAT di Area Vasta Costa, Centro e Sud e Settore Mare, oltre che della Direzione, completando quindi sul campo l'attività formativa.

Il foglio di calcolo in Excel è già stato fornito ad ARPAT negli anni precedenti, ed è in grado di confrontare la comunità ittica di riferimento per l'area di studio con la popolazione realmente rilevata nel corso del monitoraggio per una data stazione. Tali comunità di riferimento erano già state indicate con apposito elaborato nel corso del 2019 e successivamente modificate a seguito di approfondimenti.

Le comunità di riferimento del foglio di calcolo tengono conto della situazione regionale, infatti, i valori di densità e di biomassa delle singole specie sono state determinate confrontando tutte le diverse Carte Ittiche provinciali nonché i diversi Progetti e i molteplici studi eseguiti sul reticolo

idrografico regionale. Dal confronto e analisi delle densità e delle biomasse riportati nei diversi studi si sono estrapolati i valori ottimali per le diverse specie in base alle diverse aree zoogeografiche:

CFRIP 11 - Toscana/ Toscana

CFRP 10 - Appennino settentrionale/Versante Adriatico

CFRIP 10 - Appennino settentrionale/Versante Tirrenico

CLRIP 11 - Toscana/ Toscana

CLRP 10 - Appennino settentrionale/Versante Adriatico

CLRIP 10 - Appennino settentrionale/Versante Tirrenico

SRIP 11 - Toscana/ Toscana

SRP 10 - Appennino settentrionale/Versante Adriatico

SRIP 10 - Appennino settentrionale/Versante Tirrenico

Nel corso delle attività di campo gli operatori ARPAT sono stati istruiti all'applicazione del protocollo di campionamento (APAT 2040 Protocollo di Campionamento e Analisi Della Fauna Ittica dei Sistemi lotici guadabili), al riconoscimento delle specie ittiche, al rilevamento dei dati biometrici, all'utilizzo delle attrezzature sia in termini di sicurezza sia di efficacia.

In parallelo al lavoro sul campo è stata portata avanti la fase di inserimento dati e l'elaborazione è stata ultimata appena terminata la preparazione di diversi fogli di calcolo, uno per ognuna delle stazioni campionate.

È opportuno precisare che nell'esposizione dei risultati per ogni stazione ricorre la tabella "Specie rilevate" all'interno della quale vengono esposti il nome della specie ittica, l'abbondanza e la struttura rilevata a mezzo di campionamento, ma queste ultime non descrivono la popolazione nel senso che normalmente viene dato a questi termini, ma si riferisce alla metrica x² del metodo "Condizione biologica delle popolazioni" (Manuale NISECI, 2017), e sono così definite:

Struttura (x2ai):submetrica relativa alla struttura di popolazione in classi di età, può assumere per ciascuna specie tre diversi valori corrispondenti ad altrettanti livelli di giudizio.

Abbondanza (x2bi): submetrica relativa alla consistenza demografica, può assumere per ciascuna specie tre diversi valori corrispondenti ad altrettanti livelli di giudizio.

La Struttura e l'Abbondanza, nel senso sopra esposto, assumono rispettivamente valori da 0 a 1, e nello specifico: per la prima delle due submetriche è 0 per popolazioni destrutturate, 0,5 se mediamente strutturata, 1 se ben strutturata; per la seconda è 0 quando la popolazione è scarsa, 0,5 se intermedia, 1 se pari a quanto atteso.

Le Comunità attese e le specie ittiche presenti in Toscana

Nel "Nuovo indice dello stato ecologico delle comunità ittiche - NISECI", il principale tra i criteri per la valutazione dello stato ecologico di un determinato corso d'acqua è la naturalità della comunità ittica, intesa come completezza della composizione in specie indigene attese in relazione al quadro zoogeografico ed ecologico, e la condizione biologica delle popolazioni presenti, quantificata positivamente per le specie indigene attese e negativamente per le aliene, in termini di abbondanza e struttura di popolazione tali da garantire la capacità di autoriprodursi ed avere normali dinamiche ecologico-evolutive. Tali criteri si collegano con le richieste della Direttiva Quadro sulle Acque, 2000/60/CE, ribadite nelle relative norme di recepimento a scala nazionale (D.Lgs 152/06 e s.m.i.), le quali prevedono che per la definizione dello stato ecologico dei corpi idrici fluviali debba essere considerato l'Elemento di Qualità Biologica "fauna ittica", valutandone composizione, abbondanza e struttura di età (ISPRA, 2017).

L'Allegato 1 del Manuale 159 del 2017 di ISPRA descrive 9 Aree Zoogeografiche-ecologiche, con le rispettive comunità ittiche di riferimento a livello nazionale, individuate basandosi sulla nomenclatura utilizzata da Zerunian (2004): in riferimento a ciò vengono riferite le comunità ittiche presenti sul territorio toscano distinte nelle varie Aree Zoogeografiche-ecologiche di appartenenza. Nel medesimo allegato vengono menzionate, oltre a quelle sottoelencate, anche la "Zona dei salmonidi della regione delle isole", la "Zona dei ciprinidi a deposizione litofila della regione delle isole" e la "Zona dei ciprinidi a deposizione fitofila della regione delle isole" che non sono state valutate ai fini del presente report in quanto si considera di interesse per la fauna ittica d'acqua dolce solo il reticolo delle acque interne della penisola. Nel caso che ISPRA metta a disposizione un software dedicato per l'applicazione dell'Indice NISECI, e che questo abbia già impostata la Comunità attesa senza possibilità di modifica alcuna, potrà essere necessario ricondurre le nuove entità sistematiche, eventualmente riconosciute in definite aree della Toscana, a taxa più generici (Complesso tassonomico) che l'indice considera all'interno della comunità attesa per poter effettuare il confronto tra atteso e riscontrato che risponde appunto al primo criterio dell'Indice. Inoltre, vi è sicuramente qualche differenza tra la lista delle specie considerate autoctone nel Manuale e le tabelle sottostanti, con particolare riferimento a Cyprinus carpio (la comune Carpa) che viene riportata come facente parte delle comunità di riferimento sia della Regione Padana che di quella Italico Peninsulare ma che appartiene senza alcun dubbio alla fauna alloctona dell'intero territorio nazionale. L'inclusione nelle comunità di riferimento è probabilmente da ricondurre al fatto che si tratta di una specie introdotta da svariati secoli e molto diffusa sul territorio: il suo inserimento tra le specie alloctone determinerebbe un declassamento diffuso dei corsi d'acqua esaminati.

Figura 1. Distretti ittiogeografici da Zerunian (2003 e 2004)

Affinché il confronto tra popolazioni campionate nel corso di questa campagna di monitoraggio e le comunità prese a riferimento fosse coerente, sono state elaborate delle liste *ad hoc*, considerando l'esperienza pregressa di circa un ventennio e i dati raccolti sul campo oppure rilevati da bibliografia che sono stati condensati nel database DILETTA, le comunità di riferimento locali sono state indicate in tabelle che parzialmente si discostano da quelle indicate nel Manuale NISECI. Anche le submetriche relative alla densità e taglia delle popolazioni sono state confrontate con le esperienze pregresse di monitoraggio e con la letteratura grigia, prevalentemente carte ittiche redatte su base provinciale. Tali dati sono esposti in dettaglio nell'Allegato 1 del presente report.

Al fine di rendere il lavoro futuro degli operatori ARPAT più spedito nell'individuazione delle comunità di riferimento, è stato tenuto conto del DM 16-6-2008 n. 131 "Regolamento recante i criteri tecnici per la caratterizzazione dei corpi idrici (tipizzazione, individuazione dei corpi idrici, analisi delle pressioni) per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante: «Norme in materia ambientale», predisposto ai sensi dell'articolo 75, comma 4, dello stesso decreto." che individua in modo inequivocabile le idroecoregioni (HER, Wasson et al., 2006) con indici numerici, denominazioni (10-Appennino settentrionale e 11-Toscana rispettivamente per la nostra Regione) e confini regionali.

La Regione Toscana ha proceduto alla tipizzazione dei propri corsi d'acqua e la Giunta Regionale ha deliberato in merito il 25/05/2009 (Delibera n. 416) con atto avente come oggetto "Tipizzazione dei corpi idrici superficiali della toscana. Attuazione delle disposizioni di cui allegato 3, punto 1, alla parte III del D. Lgs 152/2006, come modificato dal decreto ministeriale, 16 giugno 2008, n. 131".

Il numero della idroecoregione è stato abbinato alla zona zoogeografica, e considerando la tipizzazione già determinata a livello regionale, la scelta della comunità di riferimento si presta ad essere effettuata con un minore rischio di errore.

Figura 2. Idroecoregioni italiane

In sintesi, il codice riferito a ciascuna delle Zone, ognuna delle quali ha una propria comunità di riferimento, è la combinazione dell'area ecologica (Salmonidi, Ciprinidi litofili e Ciprinidi fitofili), del Distretto ittiogeografico (Regione Padana e Regione Italico Peninsulare, e della Idroecoregione (10 - Appennino Settentrionale, 11 – Toscana). A esempio,CLRP 10 significa: **Zona a Ciprinidi Litofili –Regione Padana- Idroecoregione 10**.

Comunità attese nelle Aree Zoogeografiche-ecologiche della Toscana

Zona	Specie attese	Specie di maggior importanza (s/n)
SRP 10 - Appennino settentrionale/Versante Adriatico	Scazzone	S
SRP 10 - Appennino settentrionale/Versante Adriatico	Trota mediterranea distretto padano (Regione Padana)	S

Tabella 1. Zona dei salmonidi della regione padana

Zona	Specie attese	Specie di maggior importanza (s/n)
CLRP 10 - Appennino settentrionale/Versante Adriatico	Anguilla	N
CLRP 10 - Appennino settentrionale/Versante Adriatico	AA Barna (Regione Pagana)	
CLRP 10 - Appennino settentrionale/Versante Adriatico	Cavedano	N
CLRP 10 - Appennino settentrionale/Versante Adriatico	Cobite mascherato (Regione Padana)	N
CLRP 10 - Appennino settentrionale/Versante Adriatico	Ghiozzo padano (Regione Padana)	S
CLRP 10 - Appennino settentrionale/Versante Adriatico	Gobione (Regione Padana)	N
CLRP 10 - Appennino settentrionale/Versante Adriatico	Lasca (Regione Padana)	N
CLRP 10 - Appennino settentrionale/Versante Adriatico	Pigo (Regione Padana)	N
CLRP 10 - Appennino settentrionale/Versante Adriatico	Sanguinerola	N
CLRP 10 - Appennino settentrionale/Versante Adriatico	Vairone	S

Tabella 2. Zona dei ciprinidi a deposizione litofila della regione padana

Zona	Specie attese	Specie di maggior importanza (s/n)
CFRP 10 - Appennino settentrionale/Versante Adriatico	Alborella (Regione Padana)	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Anguilla	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Cavedano	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Cobite comune	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Ghiozzo padano (Regione Padana)	S
CFRP 10 - Appennino settentrionale/Versante Adriatico	Gobione (Regione Padana)	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Luccio italico	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Muggine calamita	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Persico reale (Regione Padana)	S
CFRP 10 - Appennino settentrionale/Versante Adriatico	Scardola padana (Regione Padana)	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Tinca	N
CFRP 10 - Appennino settentrionale/Versante Adriatico	Triotto (Regione Padana)	S

Tabella 3. Zona dei ciprinidi a deposizione fitofila della regione padana

Zona	Specie attese	Specie di maggior importanza (s/n)
SRIP 11 - Toscana/ Toscana	Scazzone	S
SRIP 11 - Toscana/ Toscana	Trota mediterranea distretto italico peninsulare (Regione Italicopeninsulare)	S

Tabella 4. Zona dei salmonidi della regione italico-peninsulare

Zona	Specie attese	Specie di maggior importanza (s/n)
SRIP 10 - Appennino settentrionale/Versante Tirrenico	Scazzone	S
SRP 10 - Appennino settentrionale/Versante Tirrenico	Trota mediterranea distretto italico peninsulare (Regione Italicopeninsulare)	S

Tabella 5. Zona dei salmonidi della regione italico-peninsulare

Zona	Specie attese	Specie di maggior importanza (s/n)
CLRIP 11 - Toscana/ Toscana	Anguilla	N
CLRIP 11 - Toscana/ Toscana	Barbo tiberino (Regione Italicopeninsulare)	S
CLRIP 11 - Toscana/ Toscana	Cavedano	N
CLRIP 11 - Toscana/ Toscana	Cavedano etrusco (Regione Italicopeninsulare)	S
CLRIP 11 - Toscana/ Toscana	Ghiozzo di ruscello (Regione Italicopeninsulare)	S
CLRIP 11 - Toscana/ Toscana	Rovella (Regione Italicopeninsulare)	S
CLRIP 11 - Toscana/ Toscana	Vairone	S

Tabella 6. Zona dei ciprinidi a deposizione litofila della regione italico-peninsulare

Zona	Specie attese	Specie di maggior importanza (s/n)
CLRIP 10 - Toscana/ Toscana	Anguilla	N
CLRIP 10 - Toscana/ Toscana	Barbo tiberino (Regione Italicopeninsulare)	S
CLRIP 10 - Toscana/ Toscana	Cavedano	N
CLRIP 10 - Toscana/ Toscana	Cavedano etrusco (Regione Italicopeninsulare)	S
CLRIP 10 - Toscana/ Toscana	Ghiozzo di ruscello (Regione Italicopeninsulare)	S
CLRIP 10 - Toscana/ Toscana	Rovella (Regione Italicopeninsulare)	S
CLRIP 10 - Toscana/ Toscana	Vairone	S

Tabella 7. Zona dei ciprinidi a deposizione litofila della regione italico-peninsulare

ZONA	Specie attese	Specie di maggior importanza (s/n)
CFRIP 11 - Toscana/ Toscana	Anguilla	N
CFRIP 11 - Toscana/ Toscana	Cavedano	N
CFRIP 11 - Toscana/ Toscana	Cavedano etrusco (Regione Italicopeninsulare)	S
CFRIP 11 - Toscana/ Toscana	Cheppia (Alosa Agone)	N
CFRIP 11 - Toscana/ Toscana	Ghiozzo di ruscello (Regione Italicopeninsulare)	S
CFRIP 11 - Toscana/ Toscana	Luccio italico	S
CFRIP 11 - Toscana/ Toscana	Muggine calamita	N
CFRIP 11 - Toscana/ Toscana	Scardola tirrenica (Regione Italicopeninsulare)	S
CFRIP 11 - Toscana/ Toscana	Tinca	S

Tabella 8. Zona dei ciprinidi a deposizione fitofila della regione italico-peninsulare

ZONA	Specie attese	Specie di maggior importanza (s/n)
CFRIP 10 - Toscana/ Toscana	Anguilla	N
CFRIP 10 - Toscana/ Toscana	Cavedano	N
CFRIP 10 - Toscana/ Toscana	Cavedano etrusco (Regione Italicopeninsulare)	S
CFRIP 10 - Toscana/ Toscana	Cheppia (Alosa Agone)	N
CFRIP 10 - Toscana/ Toscana	Ghiozzo di ruscello (Regione Italicopeninsulare)	S
CFRIP 10 - Toscana/ Toscana	Luccio italico	S
CFRIP 10 - Toscana/ Toscana	Muggine calamita	N
CFRIP 10 - Toscana/ Toscana	Scardola tirrenica (Regione Italicopeninsulare)	S
CFRIP 10 - Toscana/ Toscana	Tinca	S

Tabella 9. Zona dei ciprinidi a deposizione fitofila della regione italico-peninsulare

In coerenza con lo stato di avanzamento degli studi di genetica, alcune specie di pesci vengono considerate autoctone per entrambi i Distretti ittiogeografici, ma essendo il versante padano della Toscana situato in area appenninica o subappenninica, fatta eccezione per *Cottusgobio* e *Tinca tinca*, le altre specie sono presenti solo nel versante tirrenico, nell'area prossima al litorale, in acque di transizione tra quelle interne ed il mare.

Nome scientifico	Nome comune
ORDINE PETROMYZONTIFORMES	
FamigliaPetromyzontidae	
Petromyzonmarinus Linnaeus, 1758	Lampreda di mare
ORDINE ANGUILLIFORMES	
FamigliaAnguillidae	
Anguilla anguilla(Linnaeus, 1758)	Anguilla
ORDINE CLUPEIFORMES	
FamigliaClupeidae	
Alosafallax (Lacépède, 1803)	Alosa o Cheppia
FamigliaEngraulidae	
Engraulis encrasicolus(Linnaeus, 1758)	Acciuga
ORDINE CYPRINIFORMES	
FamigliaCyprinidae	
Tincatinca (Linnaeus, 1758)	Tinca
ORDINE ATHERINIFORMES	
FamigliaAtherinidae	
Atherinaboyeri Risso, 1810	Latterino o Crognolo
ORDINE CYPRINODONTIFORMES	
FamigliaCyprinodontidae	
Aphaniusfasciatus(Valenciennes, 1821)	Nono
ORDINE MUGILIFORMES	
FamigliaMugulidae	
Chelonramada(Risso, 1827)	Muggine calamita
Mugilcephalus Linnaeus, 1758	Cefalo o Muggine
Chelonauratus(Risso, 1810)	Muggine dorato
ORDER PERCIFORMES	
FamigliaMoronidae	
Dicentrarchuslabrax (Linnaeus, 1758)	Spigola o Branzino
ORDINE SCORPAENIFORMES	
FamigliaCottidae	
CottusgobioLinnaeus, 1758	Scazzone
ORDINE BLENNIIFORMES	
FamigliaBlennidae	
Salaria fluviatilis(Asso, 1801)	Salaria o Cagnetta

Tabella 10. Specie autoctone di entrambi i versanti appenninici

Le specie diverse da quelle contenute in questa tabella sono tipiche di uno solo dei due versanti, quello padano oppure quello tirrenico della regione, e quindi ogni ritrovamento delle specie autoctone sul versante opposto viene considerato come riferito a specie alloctona (fenomeno della "transfaunazione", ovvero traslocazione di una specie autoctona italiana ma di distretto ittiogeografico diverso da quello del ritrovamento). A titolo di esempio il Barbo padano e il Barbo canino sono entrambi presenti sul versante tirrenico toscano (=Distretto ittiogeografico tosco-laziale

della Toscana anche denominato Regione Italico-Peninsulare), pur essendo autoctoni del Distretto ittiogeografico padano o Regione Padana, e quindi la loro presenza durante un campionamento di un corso d'acqua sul versante tirrenico è da riferirsi a taxa alloctoni (o specie aliene).

Oltre che le specie tranfaunate, sono state oggetto di introduzione anche quelle provenienti da altri Paesi.

Nelle acque interne della Toscana sono state trovate le seguenti entità esotiche:

Nome scientifico	Nome comune
ORDINE CYPRINIFORMES	
FamigliaCyprinidae	
Abramisbrama(Linnaeus, 1758)	Abramide
Barbusbarbus(Linnaeus, 1758)	Barbo europeo
Bliccabjoerkna(Linnaeus, 1758)	Blicca
Carassiusauratus(Linnaeus, 1758)	Carassio dorato
Carassiuscarassius (Linnaeus, 1758)	Carassio comune
CyprinuscarpioLinnaeus, 1758	Carpa
Leuciscusleuciscus(Linnaeus, 1758)	Cavedano europeo
Luciobarbusgraellsii(Steindachner, 1866)	Barbo spagnolo
Pachychilonpictum(Heckel&Kner, 1858)	Leucisco d'Albania
Pseudorasbora parva ((Tem.&Schl., 1846)	Pseudorasbora
Rhodeussericeus(Pallas, 1776)	Rodeo amaro
Scardiniuserythrophtalmus (L., 1758)	Scardolaeuropea
Rutilusrutilus(Linnaeus, 1758)	Rutilo
ORDINE ESOCIFORMES	
FamigliaEsocidae	
Esoxlucius Linnaeus, 1758	Luccio
ORDINE SALMONIFORMES	
FamigliaSalmonidae	
Salmo truttaLinnaeus, 1758	Trota di ceppo atlantico
Oncorhynchusmykiss(Walbaum, 1792)	Trota iridea
Salvelinusfontinalis (Mitchill, 1814)	Salmerino di fonte
ORDINE CICHLIFORMES	
FamigliaCichlidae	
Amatitlanianigrofasciata (Günther 1867)	Ciclidezebrato
Oreochromisniloticus (Linnaeus 1758)	Tilapia
ORDINE CYPRINODONTIFORMES	•
FamigliaPoecilidae	
Gambusia holbrookiGirard, 1859	Gambusia
ORDINE SILURIFORMES	
Famiglialctaluridae	
Ameiurusmelas (Rafinesque, 1820)	Pesce gatto
Ictaluruspunctatus (Rafinesque, 1818)	Pesce gatto punteggiate
FamigliaSiluridae	2 11 11 11 11 11 11 11
Silurusglanis Linnaeus, 1758	Siluro d'Europa
FamigliaLoricariidae	1
Pterygoplichthyspardalis(Castelnau 1855)	Pleco comune
FamigliaClariidae	
Clariasgariepinus (Burchell, 1822)	Clarias
ORDER CENTRARCHIFORMES	
FamigliaCentrarchidae	
Lepomisgibbosus (Linnaeus, 1758)	Persico sole
Micropterussalmoides Lacépède, 1802	Persico trota
ORDER PERCIFORMES	1 Cloled Hota
Famiglia Percidae	
Sander lucioperca (Linnaeus, 1758)	Sandra o Lucioperca
Perca fluviatilis Linnaeus, 1758	Persico reale

Tabella 11. Specie alloctone di entrambi i versanti appenninici

La lista delle specie esotiche viene riportata ai fini del calcolo della terza metrica "x₃" del NISECI: "Presenza di specie aliene o ibridi, struttura delle relative popolazioni e rapporto numerico rispetto alle specie indigene".

Ad eccezione del Siluro che secondo l'Allegato 3 del Manuale 159/2017 ISPRA è considerata "Specie a nocività elevata", tutte le altre specie elencate ricadono nella categoria "Specie a nocività media" o "Specie a nocività moderata": appartenenti a quest'ultima categoria sono considerate la maggior parte delle specie transfaunate sopra descritte.

Un discorso a parte è necessario per la Trota: le popolazioni presenti sul territorio sono quasi sicuramente il frutto di immissioni che per diversi anni sono state praticate a scopo alieutico e il grado di ibridazione con le entità autoctone non è conosciuto perché non vi sono dati disponibili risultanti da analisi genetiche effettuate sui Salmonidi presenti nei corsi d'acqua della Toscana, oppure sono piuttosto datati e sicuramente indirizzati a popolazioni molto localizzate. Poiché l'inserimento nel corso delle elaborazioni di specie alloctone, quali potrebbero essere considerate le Trote provenienti da areali diversi da quelli di origine come il Distretto Italico Peninsulare e il Distretto Padano, ad esempio Trote di ceppo atlantico, avrebbe abbattuto il valore del NISECI senza peraltro avere come solida giustificazione dati esaustivi di riferimento della reale alloctonia delle diverse popolazioni che vivono nei corsi d'acqua toscani, è stato considerato corretto inserire come appartenenti a "Trote di ceppo mediterraneo" del corrispondente Distretto i Salmonidi rinvenuti nel corso del monitoraggio, conferendo in questo modo alle popolazioni toscane un livello di autoctonia precauzionale almeno fino a quando non verrà chiarito il loro reale livello di ibridazione con le popolazioni autoctone o la loro totale alloctonia nell'areale geografico di riferimento.

Il medesimo criterio è stato adottato per la Scardola, che nella maggior parte delle carte ittiche compare ancora con il nome scientifico *Scardinius erythrophthalmus*, ormai attribuito a un taxon completamente estraneo al territorio nazionale. Le popolazioni di questa specie rinvenute nelle acque interne sono state attribuite in via precauzionale alla specie di Scardola autoctona dell'area, in attesa che vengano compiute delle analisi più approfondite su base genetica che consentano una determinazione più accurata.

Note metodologiche per il monitoraggio

La raccolta dati viene eseguita sulla base di campionamenti effettuati secondo modalità standardizzate (ISPRA, 2014). In particolare, il protocollo seguito è il 2040 "Protocollo di campionamento e analisi della fauna ittica dei sistemi lotici guadabili".

Ai fini del citato protocollo, si intendono guadabili i corsi d'acqua in cui gli operatori possono accedere insicurezza a tutte le porzioni dell'area individuata come "stazione" nel periodo previsto per il campionamento.

È quindi che il presente protocollo sia applicabile nei corsi d'acqua con profondità media delle acque non superiore ai 70 cm.

A seconda poi della larghezza del corso d'acqua, la lunghezza del tratto da campionare può avere dimensioni diverse:

Stazione: porzione di corpo idrico in cui viene effettuato il campionamento ittico, secondo le modalità definite nel presente protocollo. Ogni stazione è suddivisa in due tratti consecutivi, il primo dei quali viene campionato con approccio quantitativo ed il secondo con approccio qualitativo.

Tratto: porzione di una stazione di campionamento in corrispondenza della quale si adotta uno specifico approccio di campionamento (quantitativo o qualitativo). Il tratto può <u>avere una lunghezza minima di 50 o di100 metri (a seconda che la larghezza dell'alveo attivo sia inferiore o uguale a 5m <u>oppure superiore)</u>; la lunghezza complessiva deve comunque essere sempre un multiplo di 25m. Ciascun tratto viene suddiviso in incrementi di 25m.</u>

Incremento: porzione del tratto di lunghezza pari a 25 m. All'incremento vengono riferiti tutti i dati rilevati, sia di tipo biologico sia stazionali.

Il campionamento viene effettuato **esclusivamente tramite elettro-pesca**, utilizzando un elettrostorditore in grado di emettere sia corrente continua (DC) che corrente continua pulsata (PDC).

Una stazione è composta di due tratti, uno qualitativo e uno quantitativo:

- 1. Nel tratto quantitativo il campionamento deve garantire un livello di efficienza tale da rappresentare la completa comunità ittica presente nel tratto. A tale scopo devono essere eseguite almeno 2 passate. Qualora nella seconda passata il numero di pesci complessivamente catturato non sia inferiore della metà rispetto al numero di pesci catturati con la precedente, si procede ad un'ulteriore passata con le medesime modalità. Tale procedura va ripetuta fino a quando in una passata il numero di esemplari catturati sia inferiore alla metà di quelli prelevati nella passata precedente. Nel caso in cui alla prima passata non venga catturato alcun esemplare (comunità pressoché inesistente), può non essere eseguita la seconda passata. La squadra che opera in alveo deve essere costituita da un numero adeguato di operatori in funzione della dimensione del corpo idrico campionato e delle caratteristiche della comunità attesa. Nella maggior parte delle situazioni si reputa idonea una squadra costituita da almeno 4 operatori (1 deputato all'uso dell'elettrostorditore, 2 muniti di guadino, 1 adibito al trasporto dei pesci alle vasche di stabulazione, al periodico controllo delle condizioni degli stessi ed alla registrazione dei dati stazionali). Solo nel caso in cui la comunità attesa sia estremamente semplificata (non più di due specie), può essere evitata la suddivisione del tratto in incrementi. Il protocollo considera necessario che a tutti gli esemplari vengano rilevati peso e lunghezza totale.
- 2. Il tratto qualitativo deve essere campionato con una singola passata. Qualora, considerando anche gli incrementi del precedente tratto quantitativo, non vengano contattate specie nuove per 4 incrementi consecutivi, il campionamento qualitativo può essere interrotto. Ad esempio:

se dopo il primo incremento del tratto quantitativo non vengono incontrate più specie nuove, si può concludere il campionamento una volta effettuato il primo incremento del tratto qualitativo (evitando così, di effettuare i rimanenti 3).

I dati così rilevati sono inseriti nel foglio di calcolo appositamente costruito (come già rilevato, ISPRA al momento non ha ancora distribuito il software dedicato).

La formulazione multimetrica dell'indice, il cui valore varia, così come quello di tutte le metriche e sub metriche costitutive, tra 0 e 1, è data dalla combinazione di:

x1 = metrica "presenza/assenza di specie indigene"

x2 = metrica "condizione biologica delle popolazioni di specie autoctone"

x3 = metrica "presenza di specie aliene o ibridi, struttura delle relative popolazioni e rapporto numerico rispetto alle specie indigene"

Per quanto riguarda la metrica X1, alcune delle submetriche sono in relazione al numero delle specie autoctone attese (Tab.1, Tab.2, Tab. 3, Tab. 4, Tab.5, Tab. 6 e Tab.7):

- Zona dei salmonidi della regione padana
- Zona dei ciprinidi a deposizione litofila della regione padana
- Zona dei ciprinidi a deposizione fitofila della regione padana
- Zona dei salmonidi della regione italico-peninsulare
- Zona dei ciprinidi a deposizione litofila della regione italico-peninsulare
- Zona dei ciprinidi a deposizione fitofila della regione italico-peninsulare

Per il corretto riferimento del corso d'acqua nella Zona codificata (Es. CFRIP 11 - Toscana/ Toscana), si è tenuto conto, oltre che dell'appartenenza al versante tirrenico oppure adriatico, anche della Tipizzazione dei corsi d'acqua resa disponibile da ARPAT: i corsi considerati in questa fase operativa ricadono tutti nella zona 10 oppure 11.

Poiché i valori di stato ecologico, ai sensi della normativa europea, devono essere espressi sotto forma di Rapporto di Qualità Ecologica (RQE), ovvero il rapporto tra lo stato della comunità ittica osservata e quello della corrispondente comunità di riferimento, sono stati calcolati i valori soglia di NISECI in modo da definire intervalli RQE di uguale ampiezza per ciascuna delle 5 classi previste. La relazione tra NISECI e **RQE**NISECI è stata ottenuta tramite simulazione di 21.000 casi, nel corso della quale le 3metriche dell'indice sono state fatte variare da 0 a 1 per incrementi di 0.1:

RQE_{NISECI} = (logNISECI + 1.1283)/1.0603

Infine, si ottiene lo stato ecologico con valori che sono diversi per l'area alpina e per quella mediterranea come segue:

Stato ecologico	Area alpina	Area mediterranea
Elevato	$0.80 \le RQE_{NISECI}$	$0.80 \le RQE_{NISECI}$
Buono	$0.52 \le RQE_{NISECI} \le 0.80$	$0.60 \le RQE_{NISECI} \le 0.80$
Moderato	$0.40 \le RQE_{NISECI} \le 0.52$	$0.40 \le RQE_{NISECI} \le 0.60$
Scadente	$0.20 \le RQE_{NISECI} \le 0.40$	$0.20 \le RQE_{NISECI} \le 0.40$
Cattivo	RQE _{NISECI} < 0.20	RQE _{NISECI} < 0.20

In base a quanto esposto nel capitolo I del Manuale NISECI "Nell'ambito del processo di affinamento della zonazione ittica, possono essere individuate zone in cui la comunità ittica naturale attesa è nulla (ad esempio: presenza di ostacoli naturali insormontabili, altitudine, pendenza e condizioni di glacialità) oppure è costituita da una singola specie. In tali aree non è attualmente prevista la possibilità di classificare lo stato ecologico tramite la versione corrente di NISECI".

Anche in questo ultimo caso è stato comunque ultimato il campionamento con il metodo delle due passate, in quanto i dati biometrici vanno a integrare il database relativo alla fauna ittica in possesso della Regione Toscana.

RISULTATI

Rilevamento comunità ittiche: stazioni e calendario

La scelta delle 10 stazioni sulle quali applicare l'indice NISECI è stata preventivamente concordata con i referenti dell'Agenzia, tenendo in considerazione la necessità di coinvolgimento del maggior numero di operatori ai fini della formazione, oltre che della maggior diversificazione possibile degli ambienti monitorati.

ID	CODICE RETE DI MONITORAGGIO	DENOMINAZIONE CORSO D'ACQUA	DATA ANNO 2024
1_2024	(MAS-067A)	Fiume Paglia	5/5
2_2024	(MAS-526)	Torrente Marmolaio	3/7
3_2024	(MAS-874)	Fiume Elsa	14/6
4_2024	(MAS-834)	Torrente Pedogna	18/4
5_2024	(MAS-995)	Rio Guappero	26/6
6_2024	MAS-129	Torrente Ombrone_pistoiese	12/6
7_2024	MAS-501	Fosso del Procchio	5/6
8_2024	MAS-512	Torrente Brana	12/6
9_2024	MAS-949	Torrente Salutio	10/7
10_2024	MAS-972	Torrente di Fiumenta	19/6

Tabella 10. Punti MAS utilizzati ai fini del NISECI per l'anno 2024

Il codice MAS è posto fuori parentesi quando coincide esattamente con il punto di campionamento normalmente utilizzato per il Monitoraggio Acque Superficiali, mentre è tra parentesi quando il punto di campionamento utilizzato per l'applicazione dell'Indice NISECI è stato posizionato poco distante dal punto MAS ufficiale, al fine di una corretta applicazione del protocollo previsto.

Il codice MAS del Torrente Marmolaio si riferisce in realtà al torrente Savalano, e ricade nella stessa area omogenea: il primo è affluente del T. Pescera che, come il T. Savalano, è affluente del T. Fine. Sul primo non ricade alcun punto MAS ma presenta caratteristiche tali, quali guadabilità e flusso continuo, da rendere possibile l'applicazione del protocollo di campo previsto dall'Indice.

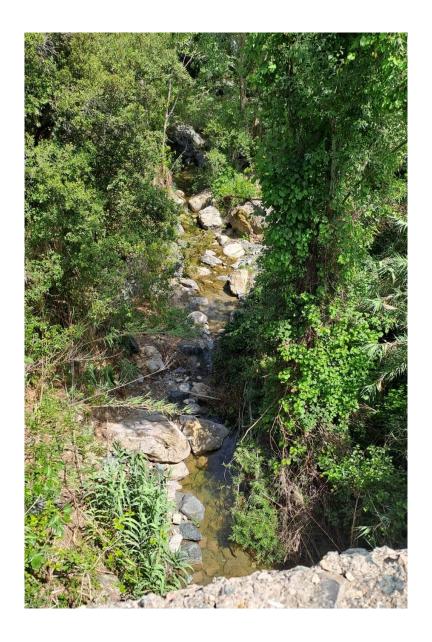
Stazione 1 Fiume Paglia: Ponte a Rigo

MAS	(MAS-067)
ID NISECI	01_2024
Denominazione	Fiume Paglia
Località	Ponte a Rigo
Corso	Fiume Paglia
Coordinate	1726242 4744697

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Cavedano	1	0,5
Alborella	0	0,5
Barbo tiberino	1	0,5
Ghiozzo di ruscello	0	0
Cobite comune	0,5	0
Lasca	1	0,5
Vairone	0	0

Tabella 12. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 11 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.



Corso d'acqua	Fiume Paglia	
Comunità di Rifermento	CLRIP 11 - Toscana/ Toscana	
Data	15/05/2024	
Area Campionamento mq	740	
Metrica x1	0,56	
Metrica x2	0,35	
Metrica x3	0,63	
NISECI	0,278	
RQEniseci	0,540	
Stato ecologico	Moderato	

Tabella 13. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 2 Torrente Marmolaio: Pomaia

MAS	(MAS-526)
ID NISECI	02_2024
Denominazione s	Torrente Marmolaio
Località	Pomaia
Corso	Torrente Marmolaio
Coordinate	1627136 4810015

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Anguilla	1	0
Vairone	1	0,5
Barbo tiberino	0,5	0,5

Tabella 14. Specie rilevate

Il codice MAS del Torrente Marmolaio si riferisce in realtà al torrente Savalano, e ricade nella stessa area omogenea: il primo è affluente del T. Pescera che, come il T. Savalano, sbocca nel T. Fine. Sul primo non ricade alcun punto MAS ma presenta caratteristiche tali, quali guadabilità e flusso continuo, da poter applicare il protocollo di campo previsto dall'Indice.

Applicazione del metodo NISECI: nella Tabella 13 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

Corso d'acqua	Fiume Marmolaio	
Comunità di Rifermento	CLRIP 11 - Toscana/ Toscana	
Data	03/07/2024	
Area Campionamento mq	150	
Metrica x1	0,39	
Metrica x2	0,53	
Metrica x3	1,00	
NISECI	0,301	
RQEniseci	0,573	
Stato ecologico	Moderato	

Tabella 15. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 3 Fiume Elsa: I Pianacci

MAS	MAS_530
ID NISECI	03_2022
Denominazione	Fiume Elsa
Località	I Pianacci
Corso	Fiume Elsa
Coordinate	1671067 4803046

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Ghiozzo di ruscello	1,00	0
Cavedano	1,00	0,5
Lasca	1,00	0,5
Triotto	0,00	0
Cavedano etrusco	0,50	0,5
Alborella	0,00	0
Rovella	0,00	0
Persico sole	0,00	0
Barbo tiberino	1	1

Tabella 16. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 15 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

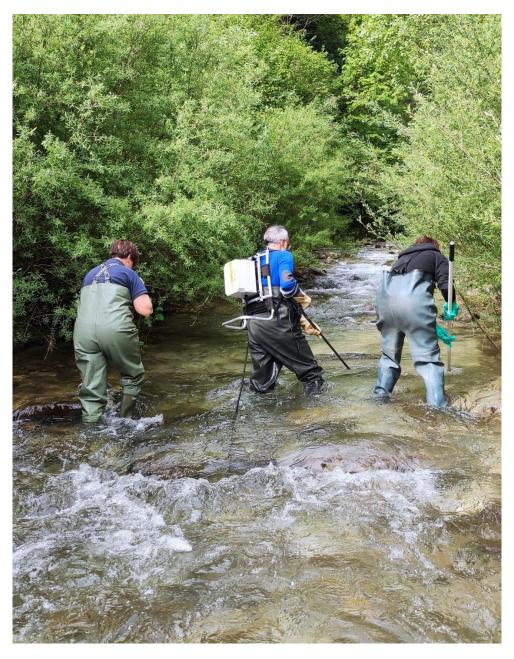
Figura 3. Barbo tiberino

Figura 4. Cavedano

Figura 5. Lasca

Figura 6. Persico sole

Figura 7. Triotto



Corso d'acqua	Fiume Elsa	
Comunità di Rifermento	CLRIP 11 - Toscana/ Toscana	
Data	14/06/2024	
Area Campionamento mq	205,83	
Metrica x1	0,78	
Metrica x2	0,52	
Metrica x3	0,81	
NISECI	0,475	
RQE _{NISECI}	0,759	
Stato ecologico	Buono	

Tabella 17. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 4 Torrente Pedogna: Pedogna

MAS	(MAS_834)
ID NISECI	04_2024
Denominazione	Torrente Pedogna
Località	Pedogna
Corso	Torrente Pedogna
Coordinate	1620017 4869413

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Cavedano	0	0
Trota mediterranea	0	0
Barbo	0	0
Anguilla	0	0
Vairone	0	0

Tabella 18. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 17 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

Figura 8. Vairone

Corso d'acqua	Torrente Pedogna	
Comunità di	SRIP 10 - Appennino settentrionale/Versante	
Rifermento	Tirrenico	
Data	18/04/2024	
Area Campionamento	598	
Motrico v1	0.60	
Metrica x1	0,60	
Metrica x2	0,00	
Metrica x3	0,00	
NISECI	0,070	
RQEniseci	-0,027	
Stato ecologico	Cattivo	

Tabella 19. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 5 Rio Guappero: Massa Pisana

MAS	(MAS_995)
ID NISECI	05_2022
Denominazione	Torrente Guappero
Località	Massa Pisana
Corso	Torrente Guappero
Coordinate	1620036 4851499

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Cavedano	1	0
Alborella	0	0
Anguilla	0,5	0
Luccio italico	0,5	0
Gambusia	0	0
Rovella	1	0,5
Lasca	0	0
Gobione	0	0
Barbo tiberino	0	0
Persico sole	0	0
Pseudorasbora	0	0,5

Tabella 20. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 19 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

Corso d'acqua	Torrente Guappero
Comunità di Rifermento	CFRIP 11 - Toscana/ Toscana
Data	26/06/2024
Area Campionamento mq	195
Metrica x1	0,30
Metrica x2	0,27
Metrica x3	0,00
NISECI	0,155
RQEniseci	0,299
Stato ecologico	Scadente

Tabella 20. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 6 Torrente Ombrone: Ponte della Caserana

MAS	MAS-129
ID NISECI	06_2024
Denominazione	Torrente Ombrone Pistoiese
Località	Ponte della Caserana
Corso	Torrente Ombrone Pistoiese
Coordinate	1662251 4858643

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Cavedano	1	0
Alborella	0	0
Cobite di stagno orientale	0,5	0
Ghiozzo padano	0	0
Ghiozzo di ruscello	0	0
Rovella	1	1

Tabella 21. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 21 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

Corso d'acqua	Torrente Ombrone Pistoiese	
Comunità di Rifermento	CFRIP 10 - Appennino settentrionale/Versante Tirrenico	
Data	12/06/2024	
Area Campionamento mq	230	
Metrica x1	0,22	
Metrica x2	0,20	
Metrica x3	0,00	
NISECI	0,114	
RQEniseci	0,173	
Stato ecologico	Cattivo	

Tabella 22. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 7 Fosso del Procchio: Pitigliano

MAS	MAS-501
ID NISECI	07_2024
Denominazione	Fosso del Procchio
Località	Pitigliano
Corso	Fosso del Procchio
Coordinate	1719162 4724110

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Cavedano	0.5	0
Barbo tiberino	0.5	0
Vairone	0	0

Tabella 23. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 23 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

Corso d'acqua	Fosso del Procchio
Comunità di Rifermento	CLRIP 11 - Toscana/ Toscana
Data	05/06/2024
Area Campionamento mq	120
Metrica x1	0,39
Metrica x2	0,13
Metrica x3	1,00
NISECI	0,140
RQE _{NISECI}	0,260
Stato ecologico	Scadente

Tabella 24. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 8 Torrente Brana: Castelletto

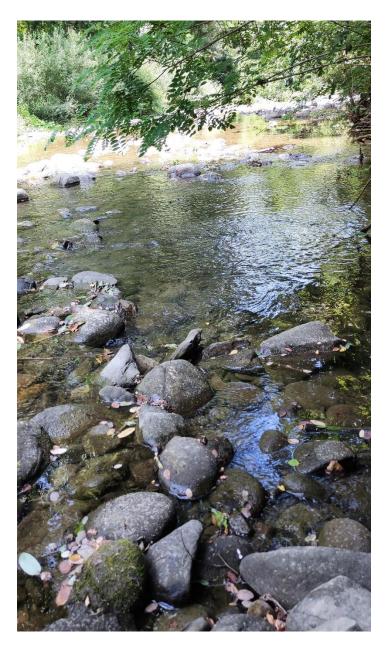
MAS	MAS-512
ID NISECI	08_2024
Denominazione	Torrente Brana
Località	Castelletto
Corso	Torrente Brana
Coordinate	1658939 4863673

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Cavedano	1	0,5
Alborella	0	0
Anguilla	0	0
Ghiozzo padano	0	0,5
Rodeo amaro	0	1
Rovella	1	0,5
Pseudorasbora	0,5	0,5
Carassio dorato	0,5	0
Barbo	0	0
Cobite di stagno orientale	0,5	0

Tabella 25. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 25 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

Figura 9. Rodeo



Fiume	Torrente Brana	
Comunità di Rifermento	CFRIP 10 - Appennino settentrionale/Versante Tirrenico	
Data	12/06/2024	
Area Campionamento mq	218	
Metrica x1	0,17	
Metrica x2	0,35	
Metrica x3	0,00	
NISECI	0,135	
RQEniseci	0,243	
Stato ecologico	Scadente	

Tabella 21. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 9 Torrente Salutio: Tulliano

MAS	MAS-949
ID NISECI	09_2024
Denominazione Torrente Salutio	
Località	Tulliano
Corso	Torrente Salutio
Coordinate	1728322 4834230

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Ghiozzo di ruscello	1	0,5
Cavedano	0	0
Ghiozzo padano	0	0
Trota mediterranea distretto italico peninsulare	0	0
Cavedano etrusco	0	0
Persico sole	0	0
Rovella	0	0,5
Vairone	0	1
Barbo tiberino	0	0

Tabella 27. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 27 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

Fiume	Torrente Salutio	
Comunità di Rifermento	CLRIP 10 - Appennino settentrionale/Versante Tirrenico	
Data	10/07/2024	
Area Campionamento mq	788	
Metrica x1	0,89	
Metrica x2	0,27	
Metrica x3	0,88	
NISECI	0,331	
RQE _{NISECI}	0,612	
Stato ecologico	Buono	

Tabella 22. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Stazione 10 Torrente Fiumenta: Ponte per Luciana

MAS	MAS-972
ID NISECI	10_2024
Denominazione	Torrente Fiumenta
Località	Ponte per Luciana
Corso	Torrente Fiumenta
Coordinate	1672079 4882430

Specie	Abbondanza (x2bi)	Struttura (x2ai)
Trota mediterranea distretto italico peninsulare	0,5	0,5
Vairone	1	0,5
Scazzone	0	0

Tabella 29. Specie rilevate

Applicazione del metodo NISECI: nella Tabella 29 sono riportate le specie rilevate con il calcolo degli indicatori di abbondanza e struttura di popolazione usati nel metodo.

Figura 10. Scazzone

Corso d'acqua	Torrente Fiumenta		
Comunità di Rifermento	SRIP 10 - Appennino settentrionale/Versante Tirrenico		
Data	19/06/2024		
Area Campionamento mq	200		
Metrica x1	1,00		
Metrica x2	0,25		
Metrica x3	1,00		
NISECI	0,350		
RQE _{NISECI}	0,634		
Stato ecologico	Buono		

Tabella 23. Risultati ottenuti per le singole metriche, lo Stato ecologico e l'RQE

Sintesi applicazione NISECI nel 2024

CODICE RETE DI MONITORAGGIO	DENOMINAZIONE CORSO D'ACQUA	RQEniseci	Stato ecologico NISECI
1_2024	FIUME PAGLIA	0,540	Moderato
2_2024	TORRENTE MARMOLAIO	0,573	Moderato
4_2024	FIUME ELSA	0,759	Buono
3_2024	TORRENTE PEDOGNA	-0.027	Cattivo
5_2024	RIO GUAPPERO	0,299	Scadente
6_2024	TORRENTE OMBRONE PISTOIESE	0,173	Cattivo
7_2024	FOSSO DEL PROCCHIO	0,260	Scadente
8_2024	TORRENTE BRANA	0,243	Scadente
9_2024	TORRENTE SALUTIO	0,612	Buono
10_2024	TORRENTE DI FIUMENTA	0,634	Buono

Tabella 31: Riepilogo del RQE e Stato ecologico delle stazioni NISECI 2024

CONCLUSIONI

Il metodo NISECI è risultato applicabile in tutte le 10 stazioni: durante le operazioni di monitoraggio, il protocollo di campionamento e analisi della fauna ittica dei sistemi lotici guadabili (2040) è stato applicato senza incorrere in alcuna delle situazioni che ne ostacolano la corretta applicazione, quali a titoli di esempio la discontinuità fluviale, grazie a sopralluoghi degli operatori ARPAT effettuati nei giorni precedenti i campionamenti. Non è stata riscontrata alcuna comunità ittica monospecifica, condizione che comporta l'annullamento del giudizio NISECI sulla stazione.

Il Torrente Salutio, il Fiume Elsa e il Torrente Fiumenta sono risultati essere in Stato ecologico Buono, mentre il Torrente Marmolaio e il Fiume Paglia è in Stato Moderato.

Lo Stato Ecologico NISECI Scadente è stato attribuito al Rio Guappero, al Fosso di Procchio e al Torrente Brana.

In due casi lo Stato Ecologico è risultato cattivo: il Torrente Pedogna e l'Ombrone pistoiese.

Per il Torrente Paglia la valutazione dello Stato Ecologico è ricaduta nella classe Moderata in relazione al fatto che la presenza di specie indigene e alloctone è leggermente a favore delle prime le quali presentano però una bassa densità e struttura di popolazione, non idonea sia nel caso del Vairone sia in quello del Ghiozzo di ruscello. Il Torrente Marmolaio, pur ospitando solo specie autoctone, non raggiunge di poco la classe di Stato Buono, a causa della destrutturazione della popolazione dell'Anguilla e dell'abbondanza e struttura di popolazione non ottimali del Barbo tiberino. Il Fiume Elsa al contrario ospita un gran numero di specie alloctone sia esotiche, il Persico sole, sia soprattutto transfaunate, ma la popolazione di Barbo tiberino è molto abbondante e ben strutturata, tale da elevare la classe al giudizio buono. Il Torrente Pedogna ha inaspettatamente prodotto un valore di classe molto basso, con Stato ecologico cattivo, pur ospitando esclusivamente specie autoctone: l'abbondanza e la struttura di popolazione di tali specie è infatti pessima, forse in relazione a un fenomeno di estrema rarefazione della fauna ittica nel tratto considerato. Pur in una situazione ambientale ben diversa, la stessa ragione può aver causato il giudizio scadente del Fosso di Procchio. Il Rio Guappero ospita un numero elevato di specie aliene e transfaunate, e diverse specie indigene; tuttavia, questa abbondanza numerica di taxa si traduce in un giudizio qualitativo scadente a causa della forte destrutturazione delle popolazioni in praticamente tutte le specie. Nel Torrente Ombrone pistoiese è stata rilevata per la prima volta in Toscana la presenza del Misgurno o Cobite di stagno orientale (Misgurnus anguillicaudatus), oltre a specie transfaunate e indigine, ma ad esclusione della Rovella che presenta abbondanza e struttura idonee rispetto a quelle di riferimento, tutte le popolazioni sono fortemente destrutturate, portando lo Stato ecologico alla classe peggiore (Cattivo). La medesima situazione si è verificata nel Torrente Brana, con molte specie tra cui il Misgurno, con un giudizio di Stato ecologico scadente. Infine, il Torrente Salutio ospita la più grande popolazione dell'endemismo Padogobius nigricans (Ghiozzo dell'Arno o di ruscello) fino ad oggi campionata dall'inizio del monitoraggio NISECI. Tuttavia l'ampia dimensione dell'alveo in quel punto, che ha probabilmente accentuato il fenomeno di dispersione della fauna ittica nel corso del campionamento, e la presenza di specie alloctone, ha permesso di raggiungere solo il giudizio buono.

La finalità dell'indice è di evidenziare l'aspetto **conservazionistico** e naturalistico, mettendo in risalto situazioni dove ancora la fauna ittica è quella "originaria" ovvero "attesa" nella definizione usata dall'indice stesso che intende così fare riferimento alla completezza della composizione in specie indigene attese (metrica x₁ relativa alla presenza /assenza di specie indigene) in relazione al quadro

zoogeografico ed ecologico. Tuttavia, il numero delle specie originarie è piuttosto basso in quest'area e distribuito in modo frammentato in relazione al tipo di orografia e al carattere torrentizio dei nostri corsi d'acqua, e quindi l'Indice NISECI rischia di sottovalutare situazioni di pregio che sono sicuramente presenti ma che non vengono affatto valorizzate dal metodo.

Come già sottolineato in precedenti occasioni, il protocollo da applicare sul campo è piuttosto complesso, lungo e oneroso, e obbliga al rilievo di misure dettagliate, alle doppie passate di campionamento, con la raccolta di tutti i dati individuali sui pesci ma la metrica x_2 che riassume lo stato delle popolazioni non tiene in debito conto tali dati, considerando solo tre valori da 0 a 1 sia per l'Abbondanza sia per la Struttura all'interno della metrica x_2 che considera la Condizione biologica delle popolazioni. In alcuni casi come per il Torrente Salutio, pur essendo stata riscontrata una popolazione di *Padogobius nigricans* davvero straordinaria, la destrutturazione delle popolazioni di altre specie ha contribuito notevolmente all'abbassamento dello Stato ecologico NISECI, pur trovandoci in presenza di un ambiente fluviale con evidenti caratteristiche di naturalità.

Tutto questo nonostante, sempre in relazione alla medesima metrica, sia stato considerato che le classi di taglia di riferimento, al fine di rendere il calcolo più corretto, fossero basate sull'esperienza maturata e sui dati di taglia dedotti dal database DILETTA (database che comprende la gran parte dei dati di campionamento delle popolazioni della Toscana): le popolazioni sono di solito costituite da individui di taglia mediamente più piccola di quanto riferito sul Manuale dell'Indice.

Sempre secondo quest'ultimo la struttura di popolazione in classi di età viene valutata mediante l'utilizzo e l'integrazione di due criteri (Manuale Niseci, pag. 13), ciascuno dei quali esprime un giudizio articolato su tre valori: per quanto riguarda il primo, le classi di età in relazione alla classe di taglia, sono state fornite anche in questo caso misure più aderenti al contesto territoriale (Allegato 1) ma restano comunque troppo generiche per una regione come la Toscana all'interno della quale vi sono corsi d'acqua molto diversificati in termini di produttività, con comunità ittiche che rispecchiano quindi realtà diverse anche in termini di crescita. A puro titolo di esempio si consideri la maggior parte dei corsi planiziali con scarsa vegetazione riparia dove la produttività è naturalmente più bassa e dove quindi sia le classi di taglia sia l'abbondanza di individui sono piuttosto basse: il confronto con quanto "mediamente" rispecchiano le tabelle di riferimento porta all'abbattimento dell'Indice, e a una riduzione dello Stato ecologico corrispondente anche in condizioni qualitative complessivamente soddisfacenti.

Per quanto riguarda la metrica x₃ relativa ai Livelli di nocività delle specie aliene, la lista di riferimento presenta molte lacune, dovute al fatto che si riferisce a una pubblicazione del 2004, ma soprattutto sottovaluta il ruolo ecologico negativo di *Ictalurus punctatus*, *Lepomis gibbosus* e *Pseudorasbora parva*, queste ultime due inserite anche nel Regolamento UE 1143/2014, entrato in vigore in Italia con il Decreto legislativo 15 dicembre 2017, n. 203, che introduce una serie di disposizioni sulle specie esotiche invasive. Le tre specie sopracitate dovrebbero trovarsi a pieno titolo tra quelle a nocività elevata, considerando l'impatto che hanno sulle specie autoctone, e più in generale su tutto l'ambiente acquatico.

PROSECUZIONE DEI LAVORI

Nei primi mesi del prossimo anno solare, in accordo con i referenti ARPAT, saranno selezionati altri 10 corsi d'acqua oggetto di monitoraggio NISECI 2025. I campionamenti verranno, come al solito,

effettuati nei mesi primaverili ed estivi, considerando di volta in volta le condizioni meteo e di portata del corso d'acqua che rendono l'alveo accessibile in sicurezza agli operatori.

BIBLIOGRAFIA DI RIFERIMENTO

- Balzamo S., Macchio S., Rossi G. L., De Bonis S., 2021. Linea guida per la proposta di comunità ittiche di riferimento di dettaglio per l'applicazione dell'indice NISECI. Technical Report, 24 pp.
- Han, Z., Sun, J., Lv, A., &Wang, A. (2019). Biases from different DNA extractionmethods in intestine microbiomeresearchbased on 16S rDNAsequencing: a case in the koicarp, Cyprinus carpio var. Koi. *MicrobiologyOpen*, 8(1). https://doi.org/10.1002/mbo3.626
- Kottelatt M., Freyhof J., 2007. Handbook of Freshwater Fishes of Europe. Kottelat, Cornol&Freyhof, Berlin. 646 pp.
- Macchio S., Rossi G. L., Rossi G., De Bonis S., Balzamo S., Martone C., 2017. Nuovo indice dello stato ecologico delle comunità ittiche (NISECI). ISPRA, 20 pp.
- Nikouli, E., Meziti, A., Smeti, E., Antonopoulou, E., Mente, E., &Kormas, K. A. (2021).
 Gut Microbiota of FiveSympatricallyFarmed Marine Fish Species in the Aegean Sea.
 MicrobialEcology, 81(2), 460–470. https://doi.org/10.1007/s00248-020-01580-z
- Zerunian S., 2004 *Pesci delle acque interne d'Italia*. Quaderni Conservazione della Natura 20, Ministero dell'Ambiente Istituto Nazionale Fauna Selvatica, pp 257.
- Zerunian A., Goltara A., Schipani I., Boz B., 2009. Adeguamento dell'Indice dello Stato Ecologico delle Comunità Ittiche alla Direttiva Quadro sulle Acque 2000/60/CE. Biologia Ambientale 23(2): 1-16
- NISECI, 2017 Nuovo indice dello stato ecologico delle comunità ittiche. 20 pp
- ISPRA, 2014. Metodi Biologici per le acque superficiali interne. Pagg 135 e seguenti
- Wasson J.W., Garcia Bautista A., Chandesris A., Pella H., Armanini D., Buffagni A., 2006.
 Approccio delle Idro-Ecoregioni europee e tipologia fluviale in Francia per la Direttiva Quadro sulle Acque (EC 2000/60).

Allegato 1: Classificazione, taglia e densità ottimale per singola specie

NOME COMUNE	NOME SCIENTIFICO	Autoctono (-)/ Alieno(Nocività 1-2-3)	Taglia	Densità ottimale ind/m²
Abramide	Abramis brama	2	3	0,20
Acerina	Gymnocephalus cernuus	2	1	0,00
Alborella (Regione Italicopeninsulare)	Alburnus alburnus alborella (Regione Italicopeninsulare)	2	1	0,40
Alborella (Regione Padana)	Alburnus alburnus alborella	-	1	0,40
Alborella meridionale	Alburnus albidus	-	1	0,40
altre specie aliene	altre specie aliene non elencate	3	4	0,00
Anguilla	Anguilla anguilla	-	4	0,05
Anguilla americana	Anguilla rostrata	3	4	0,00
Aspio	Aspius aspius	1	3	0,00
Barbo (Regione Italicopeninsulare)	Barbus plebejus	3	3	0,10
Barbo (Regione Padana)	Barbus plebejus	-	3	0,10
Barbo canino (Regione Italicopeninsulare)	Barbus meridionalis caninus (Regione Italicopeninsulare)	3	2	0,10
Barbo canino (Regione Padana)	Barbus meridionalis caninus	-	2	0,10
Barbo di Graells	Barbus graellsii	2	3	0,00
Barbo europeo	Barbus barbus	2	3	0,10
Barbo spagnolo	Luciobarbus bocagei	2	3	0,10
Barbo tiberino (Regione Italicopeninsulare)	Barbus tyberinus	-	2	0,10

NOME COMUNE	NOME SCIENTIFICO	Autoctono (-)/ Alieno(Nocività 1-2-3)	Taglia	Densità ottimale ind/m²
Barbo tiberino (Regione Padana)	Barbus tyberinus	3	2	0,10
Bavosa pavone	Salaria pavo	-	1	0,05
Blicca	Blicca bjoerkna	2	2	0,20
Boga	Boops boops	-	2	0,00
Bottatrice	Lota lota	-	3	0,00
Cagnetta	Salaria fluviatilis	-	1	0,01
Carassio comune	Carassius carassius	2	3	0,20
Carassio dorato	Carassius auratus	2	3	0,20
Carpa	Cyprinus carpio	-	3	0,10
Carpa argentata	Hypophthalmichthys molitrix	2	4	0,00
Carpa erbivora	Ctenopharyngodon idellus	2	4	0,00
Carpa macrocefala	Hypophthalmichthys nobilis	2	4	0,00
Carpione del Fibreno	Salmo fibreni	-	3	0,00
Carpione del Garda	Salmo carpio	-	3	0,00
Cavedano	Squalius squalus	-	3	0,20
Cavedano etrusco (Regione Italicopeninsulare)	Squalius lucumonis	-	2	0,10
Cavedano etrusco (Regione Padana)	Squalius lucumonis	3	2	0,10
Cefalo	Mugil cephalus	-	3	0,05
Cheppia (Alosa Agone)	Alosa fallax	-	3	0,05
Ciclide zebrato	Amatitlania nigrofasciata	2	1	0,10

NOME COMUNE	NOME SCIENTIFICO	Autoctono (-)/ Alieno(Nocività 1-2-3)	Taglia	Densità ottimale ind/m²
Cobite barbatello (Regione italicopeninsulare)	Barbatula barbatula	3	1	0,05
Cobite barbatello (Regione padana)	Barbatulabarbatula	-	1	0,05
Cobite comune	Cobitis taenia bilineata	-	1	0,05
Cobite di stagno orientale	Misgurnus anguillicaudatus	2	2	0,05
Cobite mascherato (Regione Italicopeninsulare)	Sabanejewia larvata (Regione Italico- peninsulare)	3	1	0,05
Cobite mascherato (Regione Padana)	Sabanejewia larvata	-	1	0,05
Coregone lavaret	Coregonus lavaretus	3	3	0,05
Coregone nasello	Coregonus oxyrhynchus	3	3	0,05
Gambusia	Gambusia holbrooki	2	1	0,40
Ghiozzetto cenerino	Pomatoschistus canestrini	-	1	0,40
Ghiozzetto del Tortonese	Pomatoschistus tortonesei	-	1	0,40
Ghiozzetto di laguna (Regione Italicopeninsulare)	Knipowitschia panizzae	3	1	0,40
Ghiozzetto di laguna (Regione Padana)	Knipowitschia panizzae	-	1	0,40
Ghiozzetto marmoreggiato	Pomatoschistus marmoratus	-	1	0,40
Ghiozzetto minuto	Pomatoschistus minutus elongatus	-	1	0,40
Ghiozzo di ruscello (Regione Italicopeninsulare)	Padogobius nigricans	-	2	0,40

NOME COMUNE	NOME SCIENTIFICO	Autoctono (-)/ Alieno(Nocività 1-2-3)	Taglia	Densità ottimale ind/m²
Ghiozzo di ruscello (Regione Padana)	Padogobius nigricans	3	1	0,40
Ghiozzo Gò	Zosterisessor ophiocephalus	-	2	0,40
Ghiozzo nero	Gobius nigerjozo	-	1	0,40
Ghiozzo padano (Regione Italicopeninsulare)	Padogobius martensii (Regione Italico- peninsulare)	2	1	0,40
Ghiozzo padano (Regione Padana)	Padogobius martensii	-	1	0,40
Gobione (Regione Italicopeninsulare)	Romanogobius gobio (Regione Italico- peninsulare)	2	1	0,20
Gobione (Regione Padana)	Romanogobius gobio	-	1	0,20
ibrido Barbus	ibrido Barbus	3	3	0,01
ibrido Esox	ibrido Esox	3	4	0,01
ibrido Rutilus	ibrido Rutilus	3	2	0,01
ibrido Salmo	ibrido Salmo	3	3	0,01
ibrido Thymallus	ibrido Thymallus	3	3	0,01
Lampreda di fiume	Lampetra fluviatilis	-	2	0,01
Lampreda di mare	Petromyzon marinus	-	4	0,01
Lampreda di ruscello	Lampetra planeri	-	2	0,01
Lampreda padana	Lampetra zanandreai	-	2	0,01
Lasca (Regione Italicopeninsulare)	Chondrostoma genei (Regione Italico- peninsulare)	2	2	0,20
Lasca (Regione Padana)	Chondrostoma genei	-	2	0,20
Latterino	Atherina boyeri	-	1	0,20

NOME COMUNE	NOME SCIENTIFICO	Autoctono (-)/ Alieno(Nocività 1-2-3)	Taglia	Densità ottimale ind/m²
Latterino (Aterina) di lago	Atherina boyeri	-	1	0,20
Luccio	Esox lucius	-	4	0,01
Luccio italico	Esox cisalpinus	-	4	0,01
Lucioperca	Sander lucioperca	2	3	0,01
Moranec	Pachychilon pictum	2	1	0,20
Muggine calamita	Liza ramada	-	3	0,20
Muggine dorato	Liza aurata	-	3	0,20
Muggine labbrone	Chelon labrosus	-	3	0,01
Muggine musino	Liza saliens	-	3	0,01
Naso	Chondrostoma nasus	2	3	0,01
Nono	Aphanius fasciatus	-	1	0,20
Orata	Sparus auratus	-	3	0,01
Panzarolo	Knipowitschia punctatissima	-	1	0,01
Passera di mare	Platichthys flesus italicus	-	3	0,01
Persico reale (Regione Italicopeninsulare)	Perca fluviatilis (Regione Italico-peninsulare e Isole)	2	3	0,10
Persico reale (Regione Padana)	Perca fluviatilis	-	3	0,10
Persico sole	Lepomis gibbosus	2	2	0,40
Persico trota	Micropterus salmoides	2	3	0,10
Pesce ago	Syngnathus acus	-	2	0,01
Pesce ago di rio	Syngnathus abaster	-	2	0,01
Pesce gatto africano	Clarias gariepinus	2	3	0,01
Pesce gatto nebuloso	Ameiurus nebulosus	2	2	0,01
Pesce gatto nero	Ameiurus melas	2	3	0,01

NOME COMUNE	NOME SCIENTIFICO	Autoctono (-)/ Alieno(Nocività 1-2-3)	Taglia	Densità ottimale ind/m²
Pesce gatto punteggiato	Ictalurus punctatus	2	3	0,10
Pesce re	Odonthestes bonariensis	3	1	0,20
Pigo (Regione Italicopeninsulare)	Rutilus pigus (Regione Italico-peninsulare)	3	3	0,20
Pigo (Regione Padana)	Rutilius pigus	-	3	0,20
Pseudorasbora	Pseudorasbora parva	2	1	0,40
Rodeo	Rhodeus sericeus	2	1	0,40
Rovella (Regione Padana)	Rutilus rubilio (Regione Padana e Regione delle Isole)	3	1	0,20
Rovella (Regione Italicopeninsulare)	Rutilius rubilio	-	1	0,20
Rutilo	Rutilus rutilus	2	2	0,40
Salmerino	Salvelinus alpinus	-	3	0,01
Salmerino di fonte	Salvelinus fontinalis	2	2	0,01
Salmone argentato	Oncorhynchus kisutch	2	3	0,01
Sanguinerola	Phoxinus phoxinus	-	1	0,20
Savetta (Regione Italicopeninsulare)	Chondrostoma soetta (Regione Italico- peninsulare)	3	3	0,01
Savetta (Regione Padana)	Chondrostoma soetta	-	3	0,01
Scardola	Scardinius erythrophthalmus	3	3	0,20
Scardola padana (Regione Italicopeninsulare)	Scardinius hesperidicus	3	3	0,20
Scardola padana (Regione Padana)	Scardinius hesperidicus	-	3	0,20

NOME COMUNE	NOME SCIENTIFICO	Autoctono (-)/ Alieno(Nocività 1-2-3)	Taglia	Densità ottimale ind/m²
Scardola tirrenica (Regione Italicopeninsulare)	Scardinius scardafa	-	2	0,20
Scardola tirrenica (Regione Padana)	Scardinius scardafa	3	2	0,20
Scazzone	Cottus gobio	-	2	0,20
Siluro	Silurus glanis	1	4	0,01
Spigola Branzino	Dicentrarchus labrax	-	3	0,01
Spinarello	Gasterosteus aculeatus	-	1	0,01
Storione	Acipensersturio	-	4	0,01
Storione bianco	Acipenser transmontanus	3	4	0,01
Storione cobice	Acipensernaccarii	-	4	0,01
Storione ladano	Huso huso	-	4	0,01
Temolo (Regione Italicopeninsulare)	Thymallus thymallus (Regione Italico- peninsulare)	3	3	0,10
Temolo (Regione Padana)	Thymallus thymallus	-	3	0,10
Temolo ceppo atlantico	Thymallus thymallus (ceppo alloctono)	2	3	0,10
Tilapia del nilo	Oreochromis niloticus	3	2	0,10
Tinca	Tinca tinca	-	3	0,01
Triotto (Regione Italicopeninsulare)	Rutilus erythrophthalmus (Regione Italicopeninsulare)	2	2	0,20
Triotto (Regione Padana)	Rutilius erythrophthalmus	-	1	0,20
Trota di lago	Salmo (trutta) lacustris	-	3	0,20
Trota fario Ceppo Atlantico	Salmo trutta	2	3	0,20

NOME COMUNE	NOME SCIENTIFICO	Autoctono (-)/ Alieno(Nocività 1-2-3)	Taglia	Densità ottimale ind/m²
Trota iridea	Oncorhynchus mykiss	2	2	0,20
Trota marmorata (Regione Italicopeninsulare)	Salmo marmoratus	3	4	0,10
Trota marmorata (Regione Padana)	Salmo marmoratus	-	4	0,10
Trota mediterranea distretto italico peninsulare (Regione Italicopeninsulare)	Salmo cettii	-	3	0,20
Trota mediterranea distretto italico peninsulare (Regione Padana)	Salmo cettii	3	3	0,20
Trota mediterranea distretto padano (Regione Italicopeninsulare)	Salmo cenerinus	3	2	0,20
Trota mediterranea distretto padano (Regione Padana)	Salmo cenerinus	-	2	0,20
Vairone	Telestes muticellus	-	1	0,40